Course Details
01:198:425 - Brain-Inspired Computing
- Course Number: 01:198:425
- Instructor: Konstantinos Michmizos
- Course Type: Undergraduate
- Credits: 4
- Description:
The course explores how computation in the human brain can be effectively modeled across the main levels of abstraction (from a single neuron to biological neural networks and system; introduces a time-sensitive computational formalization of brain function based on the model of neuron as a Spike Processing Machine – Spike Neural Networks (SNNs); and employs neuro-mimetic or neuro-inspired SNNs to tackle a problem in a term-wide project. The aim of this course is to provide the student with a solid foundation in the field.
- Syllabus: https://docs.google.com/document/d/e/2PACX-1vR_OneWS-xGEuZavRV_DXFXV0zrF0Xr_bm-FMtkVhg5pYtdJiRgsMxv4m6fBYqUlg/pub
- Video Intro: https://drive.google.com/file/d/1GtGXhk1rnWh4qYc13Vdn6Cn-Kz2oJvpu/view
- Office Hours Schedule: Fridays 1.20 - 3.00 pm
- Office Hours Remote Link: https://rutgers.webex.com/meet/km1078
- Instructor Profile: Michmizos, Konstantinos
- Prerequisite Information:
01:198:206 and (01:640:136 or 01:640:152)
- Topics:
* Elements of Neuronal Dynamics in Biophysically realistic Neuron Models
* Dimensionality reduction and phase plane analysis: Integrate & Fire, Izhikevich, Spike Response Models, Nonlinear Neuron Models
* Parameter Optimization in linear and non-linear models
* Evolving Neuronal Populations
* The Brain as an optimization machine
* Learning via synaptic tuning
* Memory and Attractor Dynamics
* Synaptic Plasticity and Learning in Spiking Neural Networks
* Computational elements of decision making, emotions and consciousnessCourse Material:
Suggested Textbooks: (1) Keith L. Downing “Intelligence Emerging: Adaptivity and Search in Evolving Neural Systems” MIT Press | May 2015 (2) Peter Sterling and Simon Laughlin “Principles of Neural Design” MIT Press | March 2015 (3) Dana H. Ballard “Brain Computation as Hierarchical Abstraction” MIT Press | February 2015
- Expected Work: A term project on Spiking Neural Networks; 2 assignments - to prepare the students for the term project; Paper presentation.
- Exams: The usual practice is a term-project.
- Learning Goals:
The course provides an overview of the fundamental concepts and current trends in Neuro-morphic Computing with a focus on designing spiking neural networks for robotic vision and movement.