Unifying Primary cache, Scratch and Register File Memories in a Throughput Processor

Mark Gebhart1,2 \quad Stephen W. Keckler1,2 \\
Brucek Khailany2 \quad Ronny Krashinsky2 \\
William J. Dally2,3

1The University of Texas at Austin \\
2NVIDIA \\
3Stanford University \\

ACM MICRO 2012
Motivation

• GPU workload have diverse requirement
• Limited by hard partitioned storage
• Proposed solution - Unified memory with dynamic partitioning
• Flexible + Performance and energy increase
Baseline GPU Architecture

- 32 SMs
- 6 DRAM Channels
- Warp
- Co-operative thread arrays (CTA)
Baseline SM Architecture

- 32 SIMT lanes
- 1024 resident threads
- 64KB scratchpad
- 64KB cache
- 256KB register file
- 4 SIMT Lane -> cluster
- ALU, SFU, Tex
- 32 entry, in-order, 2 level Warp scheduler
- MRF – Main Register File
- Software controlled register file hierarchy
 - Operand Register File (ORF)
 - Last Result File (LRF)
- ORF – 4 entries per thread
- MRF – 1 entry per thread

Streaming Multiprocessor
Baseline SM Architecture

• Each MRF bank
 – 16 bytes wide
 – Capacity 8KB
 (32*8KB=256KB)
 – Bank conflict min by compiler
 – Operand buffering

• Cache
 – 32 2KB cache banks
 – 128 byte cache line
 – Cache tag lookup

• Shared Memory
 – 32 2KB banks
 – Conflict min by programmer
 – Gather/scatter read/write

• Crossbar
Workload Characterization

• Register usage
 – Registers per thread * number of threads
 – Compiler – Spill and fill code for register overflow

• Shared memory usage
 – Controlled by programmer
 – Memory required per CTA(block) affects no. of CTAs in SM

• Cacheable memory usage
 – Temporal locality
Sensitivity Study – Register File

DGEMM

- Y-axis: Normalized Performance
- X-axis: Register File Capacity (KB)
- Different lines represent different registers per thread:
 - 18
 - 32
 - 40
 - 64

BFS

- Y-axis: Normalized Performance
- X-axis: Register File Capacity (KB)
- Different lines represent different registers per thread:
 - 18
 - 32
 - 40
 - 64

Hotspot

- Y-axis: Normalized Performance
- X-axis: Register File Capacity (KB)
- Different lines represent different registers per thread:
 - 18
 - 32
 - 40
 - 64

PCR

- Y-axis: Normalized Performance
- X-axis: Register File Capacity (KB)
- Different lines represent different registers per thread:
 - 18
 - 32
 - 40
 - 64
Sensitivity Study – Shared Memory
Sensitivity Study – Cache Capacity

BFS

- Threads per SM: 256, 512, 768, 1024
- Normalized Performance vs Cache Capacity (KB)

PCR

- Threads per SM: 256, 512, 768, 1024
- Normalized Performance vs Cache Capacity (KB)

GPU-mummer

- Threads per SM: 256, 512, 768, 1024
- Normalized Performance vs Cache Capacity (KB)

Hotspot

- Threads per SM: 256, 512, 768, 1024
- Normalized Performance vs Cache Capacity (KB)
Unified Memory Microarchitecture

• Merges 32 MRF banks, 32 cache banks, 32 shared memory banks in SM
• Only 32 unified banks per SM
Unified Memory Bank Design

- Each bank is 16 bytes wide
- Register file values not communicated b/w SM Clusters
- Shared/cached – single bank from each cluster – 16B*8=128/cycle
- Shared memory should coalesce to 8 banks rather than 32 in conventional.
Arbitration Conflicts

- Partitioned design – Conflict within particular storage type
- Unified – Access to all types can conflict with each other
- Conflict priority – given to register access
- Conflict Minimization – Supported by software controlled register file
 - ORF and LRF reduces bandwidth to MRF
- Cache is write through – Eliminating bank access to evict dirty data
Memory Partition and Allocation

- Reconfigure memory bank before kernel launch
- Automated algorithm to partitioning
 - Allocate enough registers per thread to eliminate spill
 - Find amount of shared memory per thread
 - Calculate maximum thread count based on register count and shared memory per thread
 - Remaining storage cache
Overhead

- Applications with no benefit from unified memory
 - <1% performance overhead
 - <1% energy overhead
Benefits

- Performance improvements range from 5—71%
- Energy and DRAM reductions up to 33%
Comparison With Limited Partitioning

- Comparison with unified shared and cache