Automatic Translation of Fortran Programs to Vector Form

Randy Allen and Ken Kennedy
The problem

• New (as of 1987) vector machines such as the Cray-I have proven successful

• Most Fortran code is written sequentially, using loops

• Can we exploit parallelism without rewriting everything?
Compiler Vectorization

- Idea: Compiler detects parallelism and automatically converts loops
- No need to rewrite code or learn new language
- Opportunities for parallelism are subtle and difficult to detect
- Programmers need to tweak code into forms the optimizer can recognize
Explicit Vector Instructions

- Idea: Add forms to Fortran 8x to specify parallel operations
- Avoid writing sequential code in the first place
- Programmers better understand what parallelism opportunities exist
- Code must be rewritten
Source-to-Source Translation

• Idea: Automatically convert existing sequential Fortran into parallel Fortran 8x

• Translation only occurs once, so more expensive transformations are practical

• Programmers can add any needed parallelism the translator misses
Parallel Fortran Converter

Fortran → Translator → Fortran 8x

Hand Improvement

Fortran 8x Compiler → Vector Machine Code
Vector Operations in Fortran 8x

- Note: As of this paper, Fortran 8x is still theoretical
- Vectors and arrays may be treated as aggregates: $X = Y + Z$
- Arithmetic operators are applied point-wise
- Scalars are treated as same-valued vectors
- All arrays must have the same dimensions
Simultaneity

• Array assignment (e.g. $X = Y$) is *simultaneous*. All of Y is fetched before X is stored

• $X = X / X(2)$ uses the value for $X(2)$ prior to the assignment, even though $X(2)$ will be assigned to

• Equivalent to using a temporary variable
Array Sections

• *Triplet* notation allows reference to parts of arrays

• \(A(1:100, I) = B(J, 1:100) \) assigns 100 elements from row J of B to column I of A

• Third element of triple specifies *stride*: \(A(2:100:2) \) references first 50 even subscript positions
Array Identification

• Specifies a named mapping to an array

• IDENTIFY /1:M/ D(I) = C(I, I + 1) defines D as the superdiagonal of C

• D is just an alias; it has no storage
Conditional Assignment

- WHERE(A .GT. 0.0) A = A + B indicates that only positive elements of A will be modified
- Errors in evaluating the right-hand side must be ignored when the predicate fails
- E.g., WHERE(A .NE. 0.0) B = B/A
Library Functions

• Mathematical functions (SIN, SQRT, etc.) are extended to operate on arrays

• New intrinsic array operations: DOTPRODUCT, TRANSPOSE

• SEQ(1,N) returns an index array

• Reductions operations, e.g. SUM
Translation Process

- Goal: transform S_3 and S_4 into vector instructions and remove them from the inner loop
- Only possible if there is no semantic difference
Simple Case

- Easily becomes \(X(1:100) = X(1:100) + Y(1:100) \)

- Cannot be converted, because each iteration depends on the previous

- Known as a recurrence
Dependency Detection

• To distinguish parallel and non-parallel loops, translator must detect self-dependent statements

• First, code is *normalized* to make this test feasible
DO-Loop
Normalization

- Convert induction variables to iterate from 1 by steps of 1
- Here, J has been replaced by j
- \(S_6 \) added to preserve post-condition
Induction Variable Substitution

- Convert all subscripts to linear functions of induction variables
- KI has been removed from loop and replaced by its initial value plus its increments
- KI updated post-loop with final value
- Note: repeated addition replaced by multiplication
Dead Statement
Elimination

- Assuming J and KI aren’t used outside the loop, their final values can be discarded
- Since they also aren’t used within the loop, they can be removed entirely
Vector Code Generation

- Dependency analysis shows S_4 depends on itself, but S_3 does not
- Therefore, S_3 can be vectorized and moved out of the loop
Translation Process

Scanner-Parser → Tree → Vector Translator → Tree → Pretty Printer

Preliminary Transforms → Parallel Code Generation
Dependence Analysis

- S_2 depends on S_1 if some execution of S_2 uses a value from a previous S_1
- Self-dependence can only arise in loops
Dependency in Loops

DO 10 J = 1, N
 X(J) = X(J) + C
10 CONTINUE

No dependency

DO 10 J = 1, N - 1
 X(J + 1) = X(J) + C
10 CONTINUE

Recurrence
Dependency in Loops

\((*) \) depends on itself iff there exist \(i_1, i_2 \) such that \(1 \leq i_1 < i_2 \leq N \) and \(f(i_1) = g(i_2) \)

- Most often, \(f \) and \(g \) are linear in \(i \)
- \(ax + by = n \) has a linear solution iff \(\gcd(a,b) \mid n \)
- \(f(i) = a_0 + a_1i; g(i) = b_0 + b_1i \)
- \((*) \) depends on itself only if \(\gcd(a_1,b_1) \mid b_0 - a_0 \)
Dependency in Loops

• Unfortunately, $gcd(a_1, b_1)$ is commonly 1
• More sophisticated techniques are needed

Corollary 3 (Banerjee inequality). If $f(x) = a_0 + a_1x$ and $g(y) = b_0 + b_1y$ then statement (*) depends on itself only if

$$-b_1 - (a_1^- + b_1)^+(N - 2) \leq b_0 + b_1 - a_0 - a_1 \leq -b_1 + (a_1^+ - b_1)^+(N - 2).$$

• Even these only provide necessary conditions for dependence
• Multiple loops are harder still
Indirect Dependence

\[S_1, S_2, \text{ and } S_3 \text{ all depend indirectly on themselves}\]
Types of Dependency

• We say S_2 depends on S_1 if one of these conditions hold

• *True dependence*: S_2 uses the output of S_1

• *Antidependence*: S_1 would use the output of S_2 if they were reversed

• *Output dependence*: S_2 recalculates the output of S_1
Loop-Related Dependency

- *Loop carried dependence*: one statement stores to a location; another statement reads from that location in a *later* iteration

- *Loop independent dependence*: one statement stores to a location; another statement reads from that location in the *same* iteration

- Self-dependence is a special case of loop carried dependence
Testing Procedure

- Test each pair of statements for dependence, building a dependence relation D
- Compute the transitive closure D^+
- Execute statements which do not depend on themselves in D^+ in parallel
- Execution order must be consistent with D^+
- Reduce cycles to π-blocks; the resulting graph is acyclic
Example

This…

\[
\begin{align*}
S_1 & \quad \text{DO 10 I = 1, 99} \\
& \quad \text{X(I) = I} \\
S_2 & \quad \text{B(I) = 100-I} \\
10 & \quad \text{CONTINUE} \\
& \quad \text{DO 20 I = 1, 99} \\
S_3 & \quad \text{A(I) = F(X(I))} \\
S_4 & \quad \text{X(I + 1) = G(B(I))} \\
20 & \quad \text{CONTINUE}
\end{align*}
\]

Becomes…

\[
\begin{align*}
X(1:99) & = \text{SEQ}(1, 99, 1) \\
B(1:99) & = \text{SEQ}(99, 1, -1) \\
X(2:100) & = G(B(1:99)) \\
A(1:99) & = F(X(1:99))
\end{align*}
\]

Note: S_4 precedes S_3
Multiple Loops

- Important to note which loop carries the dependence
- We can define a maximum depth where a given dependence occurs
- Loop independent dependencies have infinite depth
- Dependency arcs are labeled with depth and type
Example

DO 30 I = 1, 100
 X(I) = Y(I) + 10
 DO 20 J = 1, 100
S1
 B(J) = A(J, N)
 DO 10 K = 1, 50
S2
 A(J + 1, K) = B(J) + C(J, K)
S3
 CONTINUE
 Y(I + J) = A(J + 1, N)
S4
 CONTINUE
 CONTINUE

DO 30 I = 1, 100
 code for S_2, S_3, S_4
 generated at lower levels
S1
 X(1:100) = Y(1:100) + 10
S2
 \[\delta_1 \]
S3
 \[\delta_2 \]
S4
 \[\delta_\infty \]
Example

```plaintext
DO 30 I = 1, 100
  DO 20 J = 1, 100
    code for S_2, S_3
    generated at lower levels
  20 CONTINUE
S_4  Y(I + 1:I + 100) = A(2:101, N)
  30 CONTINUE
S_1  X(1:100) = Y(1:100) + 10

DO 30 I = 1, 100
  DO 20 J = 1, 100
S_2  B(J) = A(J, N)
S_3  A(J + 1, 1:100) = B(J) + C(J, 1:100)
  20 CONTINUE
S_4  Y(I + 1:I + 100) = A(2:101, N)
  30 CONTINUE
S_1  X(1:100) = Y(1:100) + 10
```
Further Techniques

• *Loop interchange*: move recurrences to outer loops

• *Recurrence breaking*: antidependent and output dependent single-statement recurrences can be ignored

• *Thresholds*: recurrences may permit partial vectorization
Conditional Statements

Initial code

```
DO 100 I = 1, N
  IF (A(I) .LE. 0) GOTO 100
  A(I) = B(I) + 3
100 CONTINUE
```

Convert to data dependency

```
DO 100 I = 1, N
  BR1(I) = A(I) .LE. 0
  IF (.NOT. BR1(I)) A(I) = B(I) + 3
100 CONTINUE
```

Vectorize

```
BR1(1:N) = A(1:N) .LE. 0
WHERE (.NOT. BR1(1:N)) A(1:N) = B(1:N) + 3
```
Implementation

- Initial work based on PARAFRASE
- PFC is ~25,000 lines of PL/I
- Implements most of the translations discussed in the paper
- Runs their test case in 1 min on a 3 MB machine
Exploring the tradeoffs between programmability and efficiency in data-parallel accelerators

Yunsup Lee, Rimas Avizienis, Alex Bishara, Richard Xia, Derek Lockhart, Christopher Batten and Krste Asanović
MIMD vs SIMD

(a) MIMD

(b) Vector-SIMD

Programmer's Logical View

Typical Core Microarchitecture

HT μT0 μT1 μT2 μT3 μT4 ... μTi

Memory

Architectural Registers

Vecto-SIMD Arithmetic
Instructions

Vecto-SIMD Memory
Instructions

Architectural Vector Register
with 4 Elements

Instr Memory

Multi-threaded Cores

Data Memory

Data Memory

CP

VIU

Vector Lanes

VMU

Thursday, September 12, 2013
Two Hybrid Approaches
SIMT

• Combines MIMD’s logical view with vector-SIMD’s microarchitecture

• VIU executes multiple μTs using SIMD as long as they proceed on the same control path

• VIU uses masks to selectively disable inactive μTs on different paths
• HT manages CTs; CTs manage μTs
• Vector-fetch instruction indicates scalar instructions to be executed by μTs
• VIU operates μTs in SIMD manner, but scalar branch can cause divergence
Irregular Control Flow

Example

```c
for ( i = 0; i < n; i++ )
  if ( A[i] > 0 )
    C[i] = x * A[i] + B[i];
```

(a) Basic Flow

```
load   x, x_ptr
loop:
  setvl vlen, n
  load.v VA, a_ptr
  load.v VB, b_ptr
  cmp.gt.v VF, VA, 0
  mul.vv VT, x, VA, VF
  add.vv VC, VT, VB, VF
  store.v VC, c_ptr, VF
  add a_ptr, vlen
  add b_ptr, vlen
  add c_ptr, vlen
  sub n, vlen
  br.neq n, 0, loop

(b) Vector-SIMD
```

```
br.gte tidx, n, done
load a, a_ptr
br.eq a, 0, done
add b_ptr, tidx
load b, b_ptr
mul t, x, a
add c, t, b
store c, c_ptr
done:
```

(c) SIMT

```
load x, x_ptr
mov.sv VZ, x
loop:
  setvl vlen, n
  load.v VA, a_ptr
  load.v VB, b_ptr
  mov.sv VD, c_ptr
  fetch.v ut_code
  add a_ptr, vlen
  add b_ptr, vlen
  add c_ptr, vlen
  sub n, vlen
  br.neq n, 0, loop
...
```

(d) VT

```
br.eq a, 0, done
mul t, z, a
add c, t, b
add d, tidx
store c, d
done:
stop
```

Thursday, September 12, 2013
Summary

• Vector-based microarchitectures more area and energy efficient than scalar-based

• Maven (VT) more efficient and easier to program than vector-SIMD

• Suggestion that VT more efficient but harder to program than SIMT