Lecture 10: Data Flow Analysis II

(The lectures are based on the slides copyrighted by Keith Cooper and Linda Torczon from Rice University.)

Zheng (Eddy) Zhang

Rutgers University

Fall 2017, 11/14/2017
Review: Compiler Middle End (Optimizer)

- Front end works from the syntax of the source code
- Rest of the compiler works from intermediate representation (IR)
 - Analyzes IR to learn about the code
 - Transforms IR to improve final code
 - Examples
 1. Parallelization
 2. Redundancy elimination
 3. Data flow analysis (DFA) framework
 4. Single static assignment (SSA)
Review: Compiler Middle End (Optimizer)

- Front end works from the syntax of the source code
- Rest of the compiler works from intermediate representation (IR)
 - Analyzes IR to learn about the code
 - Transforms IR to improve final code
 - Examples
 1. Parallelization
 2. Redundancy elimination
 3. Data flow analysis (DFA) framework
 4. Single static assignment (SSA)
An expression $x+y$ is redundant if and only if, along every path from the procedure’s entry, it has been evaluated, and its constituent subexpressions $(x & y)$ have not been re-defined.

If the compiler can prove that an expression is redundant

- It can preserve the results of earlier evaluations
- It can replace the current evaluation with a reference

Two pieces to the problem

- Proving that $x+y$ is redundant
- Rewriting the code to eliminate the redundant evaluation

One single-pass, local technique to accomplish both is called value numbering (VN)
Review

Redundancy Elimination

- Local Value Numbering (LVN)
- Superlocal Value Numbering (SVN)
- Dominator Value Numbering (DVN)
- Global Common Subexpression Elimination (GCSE)
Local Value Numbering (LVN)

Find redundant operation within a block

LVN finds 2 redundant ops
LVN misses 8 redundant ops!
Review: Local Value Numbering

The Algorithm

For each operation o in the block
1. Get value numbers for the operands from a hash lookup
2. Hash $\langle \text{operator}, VN(o_1), VN(o_2) \rangle$ to get a value number for o
3. If o already had a value number, replace o with a reference
4. If o_1 & o_2 are constant, evaluate it & use a “load immediate”

Focus on each operand’s value number, not its name.
Review: Superlocal Value Numbering

Local Value Numbering (LVN)
Find redundant operation within a block

Superlocal Value Numbering (SVN)
Find redundant operation within a EBB
Review: Superlocal Value Numbering

Local Value Numbering (LVN)
Find redundant operation within a block

Superlocal Value Numbering (SVN)
Find redundant operation within a EBB

An Extended Basic Block (EBB)
Set of blocks B_1, B_2, \ldots, B_n
- B_1 is either the entry node to the procedure, or it has > 1 pred.
- All other B_i have 1 pred. & that pred. is in the EBB

Three EBBs in this CFG
1. $\{A, B, C, D, E\}$
2. $\{F\}$
3. $\{G\}$
The SVN Algorithm

1. Identify EBBs
2. In depth-first order over an EBB, starting with the head of the EBB, p_0
 (I) Apply LVN to p_i
 (II) Invoke SVN on each of p_i’s EBB successors
 • When going from p_i to its EBB successor p_j, extend the symbol table with a new scope for p_j, apply LVN to p_j, & process p_j’s EBB successors
 • When going from p_j to its EBB predecessor p_i, discard the scope for p_j

Use a scoped table & the right name space
Review: Superlocal Value Numbering

Local Value Numbering (LVN)
Find redundant operation within a block

Superlocal Value Numbering (SVN)
Find redundant operation within an EBB

An Extended Basic Block (EBB)
Set of blocks B_1, B_2, \ldots, B_n
- B_1 is either the entry node to the procedure, or it has > 1 pred.
- All other B_i have 1 pred. & that pred. is in the EBB

Three EBBs in this CFG
1. \{A, B, C, D, E\}
2. \{F\}
3. \{G\}
Review: Superlocal Value Numbering

Local Value Numbering (LVN)
Find redundancy within a block

Superlocal Value Numbering (SVN)
Find redundancy within a EBB

SVN finds 5 redundant ops.
SVN misses 5 redundant ops!
Review: Superlocal Value Numbering

Local Value Numbering (LVN)
Find redundancy within a block

Superlocal Value Numbering (SVN)
Find redundancy within a EBB

Dominator Value Numbering (DVN)
Find redundancy in IDOM-tree
Redundancy Elimination

An expression $x+y$ is redundant if and only if, along every path from the procedure’s entry, it has been evaluated, and its constituent subexpressions $(x \& y)$ have not been re-defined.

We need to understand the properties of those paths

- Specifically, what blocks occur on any path from entry to p
- If we can find those blocks, we can use their hash tables

For example:

- A is on every path to any other node; and C is on every path to D, E, and F.
- Only A is on every path to G.
Definition

In a flow graph, x dominates y if and only if every path from the entry node of the control-flow graph to y includes x

• By definition, x dominates x itself
• We associate a DOM set with each node
• DOM(x) contains the set of nodes that dominate x
• |DOM(x)| ≥ 1

<table>
<thead>
<tr>
<th>Block</th>
<th>DOM</th>
<th>IDOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>—</td>
</tr>
<tr>
<td>B</td>
<td>A,B</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>A,C</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>A,C,D</td>
<td>C</td>
</tr>
<tr>
<td>E</td>
<td>A,C,E</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>A,C,F</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>A,G</td>
<td>A</td>
</tr>
</tbody>
</table>
Review: Dominance in a Control Flow Graph

Immediate dominator
- For any node \(x \), there must be a \(y \) in \(\text{DOM}(x) \) closest to \(x \)
- We call this \(y \) the immediate dominator of \(x \)
 - \(x \) cannot be its own immediate dominator, unless \(x \) is \(n_0 \)
- As a matter of notation, we write this as \(\text{IDOM}(x) \)

<table>
<thead>
<tr>
<th>Block</th>
<th>DOM</th>
<th>IDOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>—</td>
</tr>
<tr>
<td>B</td>
<td>A,B</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>A,C</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>A,C,D</td>
<td>C</td>
</tr>
<tr>
<td>E</td>
<td>A,C,E</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>A,C,F</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>A,G</td>
<td>A</td>
</tr>
</tbody>
</table>
Computing Dominators

To use dominance information, we need to compute DOM sets
• A node n dominates node m iff n is on every path from n_0 to m
 - Every node dominates itself, by definition
 - n’s immediate dominator is the node in $\text{DOM}(n)$ that is closest to n in the graph

$\text{IDOM}(n) \neq n$, unless n is n_0, by convention.
Computing Dominators

Computing DOM

- We formulate the computation of DOM sets as a data-flow analysis (DFA) problem
- Simultaneous equations over sets associated with the nodes in the CFG

Equations relate the set value at a node n to those of its predecessors and successors.

Initially, $\text{DOM}(n) = N$, \(\forall n \neq n_0\).

1. $\text{DOM}(n_0) = \{ n_0 \}$
2. $\text{DOM}(n) = \{ n \} \cup \left(\cap_{p \in \text{preds}(n)} \text{DOM}(p) \right)$
Computing Dominators

Initially, $\text{DOM}(n) = N, \ \forall \ n \neq n_0$.

1. $\text{DOM}(n_0) = \{ n_0 \}$
2. $\text{DOM}(n) = \{ n \} \cup (\cap_{p \in \text{preds}(n)} \text{DOM}(p))$

Example:
$\text{DOM}(B_7) = \{ B_7 \} \cup \{ \text{DOM}(B_6) \cap \text{DOM}(B_8) \}$
Computing Dominators

A “fixed-point” data flow analysis (DFA) solution:

- Build a control-flow graph to identify the blocks & their predecessors
- Initialize $\text{DOM}(n)$ appropriately, for all n in the CFG
 - Set $\text{DOM}(n)$ to N, for all $n \neq n_0$
 - Set $\text{DOM}(n_0)$ to $\{n_0\}$
- Repeatedly apply the following equation until the sets stop changing

$$\text{DOM}(n) = \{n\} \cup (\cap_{p \text{ preds}(n)} \text{DOM}(p))$$

```
\text{DOM}(n_0) \leftarrow \{n_0\}
for x \leftarrow n_1 \text{ to } n_n
  \text{DOM}(x) \leftarrow \{\text{all nodes in graph, } N\}
change \leftarrow \text{true}
while (change)
  change \leftarrow \text{false}
  for x \leftarrow n_0 \text{ to } n_n
    \text{TEMP} \leftarrow \{x\} \cup (\cap_{ypred(x)} \text{DOM}(y))
    if \text{DOM}(x) \neq \text{TEMP} then
      change \leftarrow \text{true}
      \text{DOM}(x) \leftarrow \text{TEMP}
```
Computing Dominators

Initially,
\[\text{DOM}(n) = N, \quad \forall \ n \neq n_0. \]
\[\text{DOM}(n_0) = \{ n_0 \} \]

Data Flow Equation:
\[\text{DOM}(n) = \{ n \} \cup (\cap_{p \in \text{preds}(n)} \text{DOM}(p)) \]

<table>
<thead>
<tr>
<th></th>
<th>B0</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
<th>B6</th>
<th>B7</th>
<th>B8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{0}</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>{0}</td>
<td>{0,1}</td>
<td>{0,1,2}</td>
<td>{0,1,2,3}</td>
<td>{0,1,2,3,4}</td>
<td>{0,1,5}</td>
<td>{0,1,5,6}</td>
<td>{0,1,5,7}</td>
<td>{0,1,5,8}</td>
</tr>
<tr>
<td>2</td>
<td>{0}</td>
<td>{0,1}</td>
<td>{0,1,2}</td>
<td>{0,1,3}</td>
<td>{0,1,3,4}</td>
<td>{0,1,5}</td>
<td>{0,1,5,6}</td>
<td>{0,1,5,7}</td>
<td>{0,1,5,8}</td>
</tr>
<tr>
<td>3</td>
<td>{0}</td>
<td>{0,1}</td>
<td>{0,1,2}</td>
<td>{0,1,3}</td>
<td>{0,1,3,4}</td>
<td>{0,1,5}</td>
<td>{0,1,5,6}</td>
<td>{0,1,5,7}</td>
<td>{0,1,5,8}</td>
</tr>
</tbody>
</table>
Local Value Numbering (LVN)
Find redundancy within a block

Superlocal Value Numbering (SVN)
Find redundancy within a EBB

Dominator Value Numbering (DVN)
Find redundancy in IDOM-tree

1. Find blocks $DOM(p)$ occur on any path from entry to p.
2. Use hash table of $DOM(p)$ to remove redundancy
Review: Static Single Assignment (SSA) Form

Two principles
• Each name is defined by exactly one operation
• Each operand refers to exactly one definition

To reconcile these principles with real code
• Insert ϕ-functions at merge points to reconcile name space
• Add subscripts to variable names for uniqueness
Static Single Assignment (SSA)

Original Form

SSA Form
Use Dominator for Superlocal Value Numbering

SVN did not help with blocks F or G
- Multiple predecessors
- Must decide what facts hold in F and in G
- Can look at F’s or G’s DOM sets
- Or use table from IDOM(x) to start x
 - Use C for F and A for G
 - Imposes a DOM-tree application order

```
dominator tree
```

```
A 
  /    /
B     C
  |    |     G
D     E     F
```
Use Dominator for Superlocal Value Numbering

SVN did not help with blocks F or G
- Multiple predecessors
- Must decide what facts hold in F and in G
- Can look at F’s or G’s DOM sets
- Or use table from $\text{IDOM}(x)$ to start x
 - Use C for F and A for G
 - Imposes a DOM-tree application order

Dominator Tree

```
A
<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
</tbody>
</table>
```

Use C for F and A for G
- Imposes a DOM-tree application order
Use Dominator for Superlocal Value Numbering

SVN did not help with blocks F or G

- Multiple predecessors
- Must decide what facts hold in F and in G
- Can look at F’s or G’s DOM sets
- Or use table from IDOM(x) to start x
 - Use C for F and A for G
 - Imposes a DOM-tree application order
Value Numbering

Local Value Numbering (LVN)
Find redundancy within a block

Superlocal Value Numbering (SVN)
Find redundancy within a EBB

Dominator Value Numbering (DVN)
Find redundancy in IDOM-tree

DVN finds 8 redundant ops.
DVN misses 2 redundant ops!

Another shortcoming of DVN
No loop-carried redundancies
Value Numbering

Local Value Numbering (LVN)
Find redundancy within a block

Superlocal Value Numbering (SVN)
Find redundancy within a EBB

Dominator Value Numbering (DVN)
Find redundancy in IDOM-tree

Global Common Subexpression Elimination (GCSE)
Find redundancy in all basic blocks
Global Redundancy Elimination

Availability definition:

An expression is available on entry to block b if and only if, along every path from n_0 to b, it has been evaluated and none of its constituent subexpressions has been re-defined.
Annotate each block b with a set $\text{AVAIL}(b)$

$x+y \in \text{AVAIL}(b)$ iff $x+y$ is available at the entry to block b

\[
\text{AVAIL}(b) = \bigcap_{x \in \text{predecessors}(b)} (\text{DEEXPR}(x) \cup (\text{AVAIL}(x) - \text{EXPRKILL}(x)))
\]

$\text{DEEXPR}(x)$: the set of expressions defined in block x and not killed before the end of block x

($\text{downward exposed expressions}$)

$\text{EXPRKILL}(x)$: the set of expressions killed in block x

($\text{killed expressions}$)

Initial Conditions:

$\text{AVAIL}(n_0) = \emptyset$

$\text{AVAIL}(x) = \{ \text{all expressions} \}$

$$a = b + c$$

$$f = a$$

$$u = f + e$$

$$l = b + u$$

$\text{EXPRKILL}: \{f+e\}$

$\text{DEExpr}: \{b+c\}$

$\text{AVAIL}: \{b+c, b+u\}$
Computing Availability

To compute AVAIL sets:

1. Build a control-flow graph (CFG)
2. For each block b in the CFG, compute DEEXPR and EXPRKILL
3. Solve the equations for AVAIL
 I. Use a data-flow solver (e.g., round-robin iterative solver)
 II. The AVAIL equations are well-behaved (unique fixed point, fast convergence)

$$\text{AVAIL}(b) = \bigcap_{x \in \text{predecessors}(b)} (\text{DEEXPR}(x) \cup (\text{AVAIL}(x) - \text{EXPRKILL}(x)))$$
Example

AVAIL(A) = Ø
AVAIL(B) = \{a+b\} \cup (Ø \cap \text{all}) = \{a+b\}
AVAIL(C) = \{a+b\}
AVAIL(D) = \{a+b,c+d\} \cup (\{a+b,c+d\} \cap \text{all}) = \{a+b,c+d\}
AVAIL(E) = \{a+b,c+d\}
AVAIL(F) = [[b+18, a+b, e+f} \cup (\{a+b,c+d\} \cap \{e+f\})\]
\cap [[a+17,c+d,e+f} \cup (\{a+b,c+d\} \cap \{e+f\})\]
\cap \text{all} = \{a+b,c+d,e+f\}
AVAIL(G) = [[c+d} \cup (\{a+b\} \cap \text{all})\]
\cap [[a+b,c+d,e+f} \cup (\{a+b,c+d,e+f\} \cap \text{all})\]
\cap \text{all} = \{a+b,c+d\}

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEExpr</td>
<td>a+b</td>
<td>c+d</td>
<td>a+b,c+d</td>
<td>b+18,a+b,e+f</td>
<td>a+17,c+d,e+f</td>
<td>a+b,c+d,e+f</td>
<td>a+b,c+d</td>
</tr>
<tr>
<td>ExprKill</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>e+f</td>
<td>e+f</td>
<td>{}</td>
<td>{}</td>
</tr>
</tbody>
</table>
Value Numbering

Local Value Numbering (LVN)
Find redundancy within a block

Superlocal Value Numbering (SVN)
Find redundancy within a EBB

Dominator Value Numbering (DVN)
Find redundancy in IDOM-tree

Global Common Subexpression Elimination (GCSE)
Find redundancy in all basic blocks

AVAIL(F) = \{a+b, c+d, e+f\}

AVAIL(G) = \{a+b, c+d\}
Value Numbering

Local Value Numbering (LVN)
Find redundancy within a block

Superlocal Value Numbering (SVN)
Find redundancy within an EBB

Dominator Value Numbering (DVN)
Find redundancy in IDOM-tree

Global Common Subexpression Elimination (GCSE)
Find redundancy in all basic blocks

GCSE finds 10 redundant ops.
GCSE misses 0 redundant ops!
Summary

Redundancy Elimination

• Local Value Numbering (LVN)
 - Finds redundancy, constants, & algebraic identities in a block

• Superlocal Value Numbering (SVN)
 - Extends local value numbering to EBBs
 - Use SSA-like name space to simplify bookkeeping

• Dominator Value Numbering (DVN)
 - Extends scope to “almost” global (no back edges)
 - Use dominance information to handle join points in CFG

• Global Common Subexpression Elimination (GCSE)
 - Calculate available expression at every basic block
 - Use data-flow analysis to calculate available expressions
Comparison of Redundancy Elimination Techniques

<table>
<thead>
<tr>
<th>Name</th>
<th>Scope</th>
<th>Operates On</th>
<th>Basis of Identity</th>
<th>Loops</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVN</td>
<td>Local</td>
<td>blocks</td>
<td>value</td>
<td>no</td>
</tr>
<tr>
<td>SVN</td>
<td>Superlocal</td>
<td>EBBs</td>
<td>value</td>
<td>no</td>
</tr>
<tr>
<td>DVN</td>
<td>Regional</td>
<td>dom. Tree</td>
<td>value</td>
<td>no</td>
</tr>
<tr>
<td>GCSE</td>
<td>Global</td>
<td>CFG</td>
<td>lexical</td>
<td>yes</td>
</tr>
</tbody>
</table>
Review: Compiler Middle End (Optimizer)

- Front end works from the syntax of the source code
- Rest of the compiler works from intermediate representation (IR)
 - Analyzes IR to learn about the code
 - Transforms IR to improve final code
 - Examples
 1. Parallelization
 2. Redundancy elimination
 3. Data flow analysis (DFA) framework
 4. Single static assignment (SSA)
Review: Compiler Middle End (Optimizer)

- Front end works from the syntax of the source code
- Rest of the compiler works from intermediate representation (IR)
 - Analyzes IR to learn about the code
 - Transforms IR to improve final code
 - Examples
 1. Parallelization
 2. Redundancy elimination
 3. Data flow analysis (DFA) framework
 4. Single static assignment (SSA)
Live Variables

A variable v is live at point p if and only if there is a path from p to a use of v along which v is not redefined.

Uses:
1. Global register allocation
2. Improve SSA construction:
 reduce # of ϕ-functions
3. Detect references to uninitialized variables & defined but not used variables
4. Drive transformations: useless-store elimination
Equations for Live Variables

Data Flow Equation *(n_f is the exit node of the CFG)*

\[
\text{LIVEOUT}(n_f) = \varnothing
\]

\[
\text{LIVEOUT}(b) = \bigcup_{x \in \text{succ}(b)} \left(\text{UEEXPR}(x) \cup \left(\text{LIVEOUT}(x) \cap \text{VARKILL}(x) \right) \right)
\]

- **LIVEOUT(n)** contains the name of every variable that is live on exit from *n*
- **UEVAR(n)** contains the upward-exposed variables in *n*, i.e. those that are used in *n* before any redefinition in *n*
- **VARKILL(n)** contains all the variables that are defined in *n*
Three Steps in Live Variable Analysis

1. Build a CFG
2. Gather the initial information for each block
3. Use an iterative fixed-point algorithm to propagate information around the CFG

\[
\text{LIVEOUT}(n_f) = \emptyset
\]

\[
\text{LIVEOUT}(b) = \bigcup_{x \in \text{succ(b)}} (\text{UEEXPR}(x) \cup (\text{LIVEOUT}(x) \cap \text{VARKILL}(x)))
\]
Live Variable Analysis

// assume block b has k operations
// of form "x ← y op z"
for each block b
 Init(b)

 Init(b)
 UEVAR(b) ← Ø
 VARKill(b) ← Ø
 for i ← 1 to k
 if y ∉ VARKill(b)
 then add y to UEVAR(b)
 if z ∉ VARKill(b)
 then add z to UEVAR(b)
 add x to VARKill(b)

(a) Example Control-Flow Graph

(b) Initial Information

(c) Progress of the Solution
Terms

- **Postorder**: visits as many of a nodes’ children as possible before visiting the node.
- **Reverse Postorder (RPO)**: visits as many of a nodes’ predecessors as possible before visiting the node.
- **Forward problem**: RPO on CFG.
- **Backward problem**: Postorder on CFG or RPO on reverse CFG.
Comparison with AVAIL Analysis

What’s in common?
- Three steps
- Fixed-point algorithm

What is different?
- **AVAIL**: domain is a set of expressions
 LIVEOUT: domain is a set of variables
- **AVAIL**: forward problem
 LIVEOUT: backward problem
- **AVAIL**: intersection of all paths (all path problem)
 LIVEOUT: union of all paths (any path problem)

\[
\text{AVAIL}(b) = \bigcap_{x \in \text{pred}(b)} (\text{DEEXPR}(x) \cup (\text{AVAIL}(x) \cap \text{EXPRKILL}(x)))
\]

\[
\text{LIVEOUT}(b) = \bigcup_{x \in \text{succ}(b)} (\text{UEEXPR}(x) \cup (\text{LIVEOUT}(x) \cap \text{VARKILL}(x)))
\]
Reaching Definitions

A definition \(d \) of some variable \(v \) reaches operation \(i \) iff \(i \) uses the defined value of \(v \) before \(v \) is redefined

- **REACHES\((n)\)**: the set of definitions that reach the start of node \(n \)
- **DEDEF\((n)\)**: the set of downward-exposed definitions in \(n \)
 i.e., their defined variables are not redefined before leaving \(n \)
- **DEFKILL\((n)\)**: all definitions killed by a definition in \(n \).

- **Initial Condition:**
 \[\text{REACHES}(n_0) = \emptyset \]

- **Data Flow Equation:**
 \[\text{REACHES}(n) = \bigcup_{m \in \text{proc}(n)} \text{DEDEF}(m) \cup (\text{REACHES}(m) \cap \overline{\text{DEFKILL}(m)}) \]
Example: Def-Use Chains

\[
\begin{align*}
d &\leftarrow a - 2 \\
a &\leftarrow 5 \\
b &\leftarrow 3 \\
c &\leftarrow b + 2 \\
d &\leftarrow a - 2 \\
e &\leftarrow a + b \\
e &\leftarrow e + c \\
e &\leftarrow 13 \\
f &\leftarrow 2 + e \\
\end{align*}
\]

Write \(f \)
More data flow analysis in next class
Global Register Coloring
Global Register Allocation

The Big Picture
• At each point in the code
• Determine which values will reside in registers
• Select a register for each such value
• The goal is an allocation that “minimizes” running time

Most modern, global allocators use a graph-coloring paradigm
• Build a “conflict graph” or “interference graph”
• Find a k-coloring for the graph, where k is the number of available registers, or change the code to a nearby problem that it can k-color
Building the Interference Graph

What is an “interference” ? (or conflict)

- Two values *interfere* if there exists an operation where both are simultaneously live
- If \(x \) and \(y \) interfere, they cannot occupy the same register
- Interference graph construction relies on LIVE information

The interference graph, \(G_I = (N_I, E_I) \)

- Nodes in \(G_I \) represent values, or live ranges
- Edges in \(G_I \) represent individual interferences
 - For \(x, y \in N_I \), \(<x,y> \in E_I \) iff \(x \) and \(y \) interfere

A \(k \)-coloring of \(G_I \) can be mapped into an allocation to \(k \) registers
Live Range

Live ranges are simpler in a single block

A value is live from its definition to its *last* use.
- A live range is just the interval in the block from first definition to last use
- In a single block, live ranges form an interval graph

A simple Example:

<table>
<thead>
<tr>
<th>#</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a ← ...</td>
</tr>
<tr>
<td>1</td>
<td>b ← ...</td>
</tr>
<tr>
<td>2</td>
<td>c ← ... a</td>
</tr>
<tr>
<td>3</td>
<td>d ← ... b</td>
</tr>
<tr>
<td>4</td>
<td>e ← ... a</td>
</tr>
<tr>
<td>5</td>
<td>f ← ... e</td>
</tr>
</tbody>
</table>

a’s live range is [0,4]
b’s live range is [1,3]
e’s live range is [4,5]

Live ranges may, of course, overlap
- a & b are simultaneously live, so they cannot occupy the same PR
- a & e can occupy the same PR, as could b & e
In the multi-block case, live ranges are more complex.

- Consider x, y & z in the code to the right
 - x has 2 different live ranges
In the multi-block case, live ranges are more complex.

- Consider x, y & z in the code to the right
 - x has 2 different live ranges
 - y has 2 different live ranges
Live Range

In the multi-block case, live ranges are more complex.

- Consider x, y & z in the code to the right
 - x has 2 different live ranges
 - y has 2 different live ranges
 - z has 1 live range
Finding Live Ranges

We can use SSA to find live ranges in a simple way

- Build static single assignment form (SSA form)
- Consider each SSA name a set
- At each phi-function, union together the sets of the phi-function arguments
- Each remaining set is a live range
- Rename into live ranges

SSA construction details will be covered in next lecture.
Live Range

Example in (Pruned) SSA Form

• Each name is defined in exactly one operation
• Each use refers to one name
• Live ranges are
 1. \((x_0, x_2, x_3)\) and \((x_1)\)
 2. \((y_0)\) and \((y_1, y_2, y_3)\)
 3. \((z_0, z_1, z_2)\)

 As predicted several slides ago
Rename

\[x_0 \leftarrow \ldots \]
\[z_0 \leftarrow \ldots \]
\[z_1 \leftarrow \phi(z_0, z_2) \]
\[y_0 \leftarrow \ldots \]
\[x_1 \leftarrow y_0 \]
\[y_1 \leftarrow x_1 \]
\[x_2 \leftarrow \ldots \]
\[\ldots \leftarrow y_0 \]
\[y_2 \leftarrow z_1 \]
\[x_3 \leftarrow \phi(x_2, x_0) \]
\[y_3 \leftarrow \phi(y_1, y_2) \]
\[\ldots \leftarrow \ldots \]
\[z_2 \leftarrow \ldots \]
\[\ldots \leftarrow x_3 + y_3 + z_2 \]

\[x_0 \leftarrow \ldots \]
\[z_0 \leftarrow \ldots \]
\[y_0 \leftarrow \ldots \]
\[x_1 \leftarrow y_0 \]
\[y_1 \leftarrow x_1 \]
\[x_0 \leftarrow \ldots \]
\[\ldots \leftarrow y_0 \]
\[y_1 \leftarrow z_0 \]
\[\ldots \leftarrow \ldots \]
\[z_0 \leftarrow \ldots \]
\[\ldots \leftarrow x_0 + y_1 + z_0 \]
Assume we have k physical registers: k-coloring problem

Observation:
Any vertex n that fewer than k neighbors in the interference graph can always be colored.

Algorithm:

1. Pick any vertex n such that deg(n) < k and push it into the stack S.
 Remove n and all its incident edges from the interference graph.
 If there does not exist such a vertex with degree < k, prune nodes from the graph
 until we can find a vertex with degree < k. The pruning criteria can be customized.
2. Repeat step 1 until no vertex is left in the graph.
3. Successively pop vertices off the stack S and color one node at one time.
Example

3 Registers

Stack

1 is the only node with degree < 3
Example

3 Registers

Now, 2 & 3 have degree < 3
Example

3 Registers

Stack

Now all nodes have degree < 3
Example

3 Registers

Stack

1
2
4

3
5
Example

3 Registers

Stack

Colors:
1:
2:
3:

5
3
4
2
1
Example

3 Registers

Stack

Colors:
1:
2:
3:

5
3
4
2
1
Example

3 Registers

Stack

4
2
1

Colors:

1:
2:
3:

Example
Example

3 Registers

Stack

Colors:
1:
2:
3:

2 4 5

1

3

2

4

5
Example

3 Registers

Stack

Colors:
1:
2:
3:

1 2 3 4 5
Chaitin-Briggs Algorithm

An Improvement over Chaitin’s algorithm

Observation:
A node that has more than $k-1$ neighbors is not necessarily un-colorable.

Brigg’s idea:
• Keep the pruned nodes as coloring candidates and still push them into stack
• When you pop it off, a color might be available for it. If so, color it.

Maximum degree is a *loose* upper bound on colorability
Example

No node has degree < 2
- Chaitin would spill a node
- Briggs picks the same node & stacks it
Example

2 Registers

Stack

Pick a node, say 1
Example

Pick a node, say 1
Example

2 Registers

Now, both 2 & 3 have degree < 2
Pick one, say 3
Both 2 & 4 have degree < 2. Take them in order 2, then 4.
Example

2 Registers

Stack

2
3
1

4
Example

2 Registers

Now, rebuild the graph
Example

2 Registers

Stack

Colors:
1: blue
2: red
Example

2 Registers

Stack

Colors:
1:
2:
Example

2 Registers

Stack

Colors:
1:
2:
Example

2 Registers

Stack

Colors:
1:
2:
Reading

• Engineering A Compiler
 - Chapter 5.3.4
 - Chapter 5.5
 - Chapter 8.6.1
 - Chapter 9