Lecture 7: Parallelism and Dependence Analysis II
Review: Affine Loop Analysis

• A function f of variables $x_1, x_2, ..., x_n$ is affine
 - If it is in such a form
 • $f = c_0 + c_1x_1 + c_2x_2 + ... + c_nx_n$, where c_i are all constants
 • also called a linear function

• Affine array accesses
 - The indexes of an array element are all affine functions of loop indexes
 - E.g., $z[i][i + 2j - 1]

• Affine loops
 - Each loop has a single loop induction variable
 - The bounds of each loop are affine expressions of outer loop induction variables
Introduction to Affine Transformation Theory

• Three spaces
 - Iteration space
 • the set of dynamic execution instances
 • i.e. the set of value vectors taken by loop indices
 • a k-dimensional space for a k-level loop nest
 - Data space
 • the set of array elements accessed
 • an n-dimensional space for an n-dimensional array
 - Processor space
 • the set of processors in the system
 • in analysis, we may pretend there are unbounded # of virtual processors

```c
float Z[100];
for (i=0; i<10; i++)
        Z[i+10] = Z[i];
```
Review: Loop Parallelization

• An Example

float Z[100];
for (i=0; i<10; i++)
 Z[i+10] = Z[i];
Review: Iteration Spaces

• Assumptions on loops
 - Each loop has a single loop index.
 - It increments by 1 at each iteration.
 - The bounds of each loop are affine expressions of outer loop indices.

 for (i = 0; i <= 5; i++)
 for (j = i; j <= 7; j++)
 Z[j, i] = 0;
Review: Iteration Spaces

• The conjunction (logical AND) of all linear equalities on loop bounds defines a **convex polyhedron**, which is the iteration space of the loop.
 - E.g.

    ```
    i>=0;  for (i=0; i<=5; i++)
    i<=5;  for (j=i; j<=7; j++)
    j>=i;  Z[j, i] = 0;
    j<=7;
    ```

• **A convex polyhedron**
 - If two points are in it, all points on the line between them are also in it.
Review: Lexicographic Order

- Order of sequential executions
 - Sweeping through the space in an ascending lexicographic order:
 \[(a, b) \leq (a', b') \text{ iff } a < a' \text{ or } (a = a' \text{ & } b \leq b') \]

Lexicographic order for the vector \((i, j)\)
Review: Lexicographic Order

- Order of sequential executions
 - Sweeping through the space in an ascending lexicographic order:

 \[(a, b) \leq (a', b') \text{ iff } a < a' \text{ or } (a = a' \text{ and } b \leq b')\]

Lexicographic order for the vector \((j, i)\)
Review: Controlling Execution Order

• Question to answer
 - Given a re-ordering of the loop, how do we generate the loop bounds?

<table>
<thead>
<tr>
<th>for (i=0; i<=5; i++)</th>
</tr>
</thead>
<tbody>
<tr>
<td>for (j=i; j<=7; j++)</td>
</tr>
<tr>
<td>Z[j, i] = 0;</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>for (j=?; j<=?; j++)</th>
</tr>
</thead>
<tbody>
<tr>
<td>for (i=?; i<=?; i++)</td>
</tr>
<tr>
<td>Z[j, i] = 0;</td>
</tr>
</tbody>
</table>

• Examples
 1. Suppose we want to vertically sweep through the space; the ordering is j, i.

 What are the loop bounds?

 2. Suppose we want to sweep through the space diagonally.

 What are the loop bounds? Any other change to the loop induction variables?
Review: Loop Interchange

- Project the polyhedron onto the outer dimension to determine the bounds of the outer loop.

```
for (i=0; i<=5; i++)
  for (j=i; j<=7; j++)
    Z[j, i] = 0;
```

for (j=?; j<=?; j++)
 for (i=?; i<=?; i++)
 Z[j, i] = 0;
Review: Projection

- Formal definition

The projection of an n-dimensional polyhedron S onto the first m of its dimensions is the set of points \((x_1, x_2, ..., x_m)\) such that for some \(x_{m+1}, x_{m+2}, ..., x_n\), vector \([x_1, x_2, ..., x_n]\) is in S.
Review: Compute Projection

- **Input:**
 A polyhedron S defined by a set of linear constraints on $x_1, x_2, ..., x_n$. A given variable x_m that is to be eliminated.

- **Output:**
 A polyhedron S' defined by linear constraints on $x_1, x_2, ..., x_{m-1}, x_m + 1, ..., x_n$ that is a projection of S onto dimensions other than the m-th.

- **Method:**
 Fourier-Motzkin elimination.
Review: Fourier-Motzkin Elimination

• To project to the j dimension.
 - Need to eliminate variable i.

\[0 \leq i, \& i \leq j \rightarrow 0 \leq j; \]
\[j \leq 7. \]

```
for (i=0; i<=5; i++)
  for (j=i; j<=7; j++)
    Z[j, i] = 0;
```

\[(i, j) \]
\[i \geq 0; \]
\[i \leq 5; \]
\[j \geq i; \]
\[j \leq 7; \]
Review: Fourier-Motzkin Elimination

• Algorithm:
 - For every pair of a lower bound and an upper bound on x_m, such as

 $$L \leq c_1 x_m \& c_2 x_m \leq U,$$

 create a new constraint

 $$c_2 L \leq c_1 U.$$

 - S' is the set including all new constrains and those in S that do not contain x_m.
 - It is possible that S' is an empty space.
Review: Loop-Bounds Generation

- Compute the loop bounds from the innermost to the outer loops.

\[S_n = S; \]
\[\text{for } (i=n; i>=1; i--) \{
 L_{vi} = \text{all the lower bounds on } v_i \text{ in } S_i; \\
 U_{vi} = \text{all the upper bounds on } v_i \text{ in } S_i; \\
 S_{i-1} = \text{Constraints by eliminating } v_i \text{ from } S_i;
\}
\]

/* remove redundancies */
\[S' = \Phi; \]
\[\text{for } (i=1; i<=n; i++) \{
 \text{Remove any bounds in } L_{vi} \text{ and } U_{vi} \text{ implied by } S'; \\
 \text{Add the remaining constraints of } L_{vi} \text{ and } U_{vi} \text{ on } v_i \text{ to } S';
\}

\[
\begin{align*}
\text{for } (i=0; i<=5; i++) \\
& \text{for } (j=i; j<=7; j++) \\
& Z[j, i] = 0;
\end{align*}
\]

\[
\begin{align*}
\text{i} & \geq 0; \\
\text{i} & \leq 5; \\
\text{j} & \geq i; \\
\text{j} & \leq 7;
\end{align*}
\]

Target order: \((j,i)\)

\[
\begin{align*}
\text{L}_i & : 0 \\
\text{U}_i & : 5, j \\
\text{L}_j & : 0 \\
\text{U}_j & : 7
\end{align*}
\]

bounds on \(i\) is \((0, \min(5,j))\)

bounds on \(j\) is \((0, 7)\)
for (i=0; i<=5; i++)
 for (j=i; j<=7; j++)
 Z[j, i] = 0;

Target: sweep through diagonally.

[0,0], [1,1], [2,2], [3,3], [4,4], [5,5]
[0,1], [1,2], [2,3], [3,4], [4,5]
[0,2], [1,3], [2,4], [3,5]
...
[0,6], [1,7]
[0,7]

k=j-i, order: k, j.

i = j-k>=0;
i = j-k<=5;
j >= j-k;
j <= 7.

L_j: k
U_j: 5+k, 7
L_k: 0
U_k: 7

for (k=0; k<=7; k++)
 for (j=k; j<=min(5+k,7); j++)
 Z[j, j-k] =0;

for (i=0; i<=5; i++)
 for (j=i; j<=7; j++)
 Z[j, i] = 0;

j>=i;
j<=7;
i>=0;
i<=5;
j>);
Data Space

• An Example

```c
float Z[100];
for (i=0; i<10; i++)
    Z[i+10] = Z[i];
```
Data Space

• An Example

```c
float Z[100];
for (i=0; i<10; i++)
    Z[i+10] = Z[i];

f_W(i) = i+10    f_R(i) = i
```

![Diagram](image)
Data Space

- Each array index is expressed as affine expressions of loop induction variables and symbolic constants.
- A loop is affine if
 1. The loop bounds are affine expressions.
 2. Array indexes are affine expressions.
- \(< F, f, B, b >\) representation
 - Maps a vector \(i\) within \(B*i + b > 0\) to array element location \(F*i + f\).
 - \(B\) and \(b\) are for loop bounds
 - \(F\) and \(f\) are for memory references: \(F\) is the corresponding d-column matrix and \(f\) is the d-row vector. (d for the # of loop levels)

F: coefficient matrix
• \(<F, f, B, b>\) representation
 - Maps a vector \(i\) within \(B*i + b > 0\) to array element location \(F*i + f\).
 - \(B\) and \(b\) are for loop bounds
 - \(F\) and \(f\) are for memory references: \(F\) is the corresponding \(d\)-column matrix and \(f\) is the \(d\)-row vectors. (\(d\) for the # of loop levels)

\[
\begin{align*}
\text{Bi+b>0:} & & \text{Fi+f:} \\
\begin{bmatrix}
1 & 0 & 0 \\
-1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1 \\
0 & 0 & -1 \\
\end{bmatrix} & & \begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix} \\
\text{for (i=0; i<=5; i++)} & & \text{for (j=i; j<=7; j++)} \\
& & \text{for (k=j; k<=9; k++)} \\
& & Z[j, i+1, 4] = 0;
\end{align*}
\]
Data Dependence

• **Definition**

 Given two memory references, there exists a dependence between them if the three following conditions hold:

 ✓ They reference the same array (cell)
 ✓ One of them is a write
 ✓ The two associated statements are executed

• **Two memory accesses** <F, f, B, b> and <F’, f’, B’, b’> are data dependent if

 - At least one of them is a write reference and
 - There exist two vectors i and i’ such that

 \[B*i+b \geq 0 \]
 \[B'i'+b'>0 \]
 \[F*i + f = F'*i' + f' \]

 Note for instances of the same access, we need to add constraint \(i \neq i' \).
Integer Linear Programming (ILP)

• **Existence of data dependence means integer solutions exist for**
 1. \(B^i + b\geq 0 \)
 2. \(B'^{i'} + b'\geq 0 \)
 3. \(F^i + f = F'^{i'} + f' \) is essentially the following:
 - \(F^i + f \leq F'^{i'} + f' \)
 - \(F^i + f \geq F'^{i'} + f' \)

• **Integer linear programming**
 - Problem to solve: Finding integer solutions for a set of linear inequalities.
 - Complexity: NP-complete.
 - Heuristic approaches exist.
Solving ILP for Data Dependence

• **Does data dependence exist in a loop?**
 - Checking if there is solution to the integer linear programming problem
 - Equivalent to checking if a polyhedron is empty

• **Three steps**
 1. GCD test
 - If failed, no data dependences, otherwise, continue.
 2. Use a set of heuristics to examine the inequalities.
 - If still not sure, continue.
 3. Branch-and-bound approach (a general ILP approach)

\[
\begin{align*}
1. & \quad B^*i + b \geq 0 \\
2. & \quad B'^*i' + b' \geq 0 \\
3. & \quad F^*i + f = F'^*i' + f' \\
 & \quad F^*i + f = F'^*i' + f' \\
 & \quad F^*i + f \leq F'^*i' + f' \\
 & \quad F^*i + f \geq F'^*i' + f'
\end{align*}
\]
Step 1: GCD Test

• Goal: check if there exists integer solutions to the equalities

\[F^*i + f = F'^*i' + f' \]

Diophantine equation

• An equation with the condition that solutions must be integer.
• All equations in \(F^*i + f = F'^*i' + f' \) are linear Diophantine equations for dependence analysis.
Theorem

The linear Diophantine equation

\[a_1 x_1 + a_2 x_2 + \ldots + a_n x_n = c \]

has an integer solution \textbf{iff} \(\text{gcd}(a_1, a_2, \ldots, a_n) \) divides \(c \).

Example:

```plaintext
for (i=1; i<10; i++){
}
```

\(2i = 2i' + 1 \)

\(\text{i.e.} \)

\(2i - 2i' = 1. \)

\(\text{gcd}(2, -2) = 2. \) Not a divisor of 1.

No dependences.

GCD (Greatest Common Divisor)

- \(\text{gcd}(24, 36, 54) = 6. \)
More Examples

- $24x + 36y + 54z = 30$ Has integer solutions?
- $x - 2y + z = 0$ Has no integer solutions?
- $3x + 2y + z = 5$
Step 2

• **Approach 1: independent-variables test**
 - Applicable cases
 • The inequalities involving only one unknown
 - Just check whether integers exist between the upper and lower bounds

Example:

```c
for (i=0; i<= 10; i++)
  for (j=0; j<= 10; j++)
    Z[i,j] = Z[i+10, j+11];
```

```
0<= i, j, i’, j’ <=10
i = i’+10
j = j’ + 11
thus
0<= i <=10
0<= j <=10
0<= i’ = i-10 <=10
0<= j’ = j-11 <=10
```
Step 2

• **Approach 2: loop-residue test**
 - Solution
 • Build a directed graph
 • Nodes are variables
 • Edges from v_i to v_j
 • Edge weight: c
 - If there is a cycle in the graph with negative total weight, no solutions to the inequalities.
 - special case
 • $v \leq c \quad \Rightarrow \quad v \leq v_0 + c$
 • $c \leq v \quad \Rightarrow \quad v_0 \leq v - c$
Step 2

• **Approach 2: loop-residue test**
 - Solution
 • Build a directed graph
 - Nodes are variables
 - Edges from v_i to v_j
 - Edge weight: c


```
1 <= v_1, v_2 <= 10
0 <= v_3 <= 4
v_2 <= v_1
2v_1 <= 2v_3 - 7
```
Step 3

- **Branch and Bound**
 - A general method for integer linear programming problems
 - Split the space into half whenever search fails

A. Generate loop bounds:

\[S_n = S; \]

\[\text{for } (i=n; i>=1; i--) \{ \]

\[L_{v_i} = \text{all the lower bounds on } v_i \text{ in } S_i; \]

\[U_{v_i} = \text{all the upper bounds on } v_i \text{ in } S_i; \]

\[S_{i-1} = \text{Constraints by eliminating } v_i \text{ from } S_i; \]

\[\} \]

/* remove redundancies */

\[S' = \Phi; \]

\[\text{for } (i=1; i<=n; i++) \{ \]

\[\text{Remove any bounds in } L_{v_i} \text{ and } U_{v_i} \text{ implied by } S'; \]

\[\text{Add the remaining constraints of } L_{v_i} \text{ and } U_{v_i} \text{ on } v_i \text{ to } S'; \]

\[\} \]

B. Check if an integer solution exists

Apply Algorithm A to \(S_n \) to project away variables \(v_n, v_{n-1}, \ldots, v_1 \) in that order

Let \(S_i \) be the polyhedron after projecting away \(v_{i+1} \), for \(i = n-1, n-2, \ldots, 0; \)

if \(S_0 \) is false return “no”;

for \((i = 1; i <= n; i++) \)

\[\{ \]

\[\text{if (} S_i \text{ does not include an integer value) break; } \]

\[\text{pick } c_i, \text{ an integer in the middle of the range for } v_i \text{ in } S_i; \]

\[\text{modify } S_i \text{ by replacing } v_i \text{ by } c_i; \]

\[\} \]

if (\(i == n+1 \)) return “yes”;

if (\(i == 1 \)) return “no”;

let the lower and upper bounds on \(v_i \) in \(S_i \) be \(l_i \) and \(u_i \) respectively;

recursively apply this algorithm to \(S_n \cup \{ v_i <= \text{floor}(l_i) \} \) and \(S_n \cup \{ v_i >= \text{ceiling}(u_i) \} \);

if (either returns “yes”) return “yes” else return “no”;
Affine Parallel Schedule

```c
forall (p=1; p<=N; p++){
  Y[p] = Z[p];
  X[p] = Y[p];
}
```

- Affine Transformation for Parallelization
 - Synchronization free
 - Synchronization needed
Affine Parallel Schedule

forall (p=1; p<=N; p++){
 Y[p] = Z[p];
 X[p] = Y[p];
}

for (i=1; i<=100; i++)
 for (j=1; j<=100; j++){
 X[i,j] = X[i,j] + Y[i-1, j]; /* S1 */
 Y[i,j] = Y[i,j] + X[i, j-1]; /* S2 */
 }

• Affine Transformation for Parallelization
 • Synchronization free
 • Synchronization needed
Affine Parallel Schedule

forall (p=1; p<=N; p++){
 Y[p] = Z[p];
 X[p] = Y[p];
}

for (i=1; i<=100; i++)
for (j=1; j<=100; j++){
 X[i,j] = X[i,j] + Y[i-1, j]; /* S1 */
 Y[i,j] = Y[i,j] + X[i, j-1]; /* S2 */
}

• Affine Transformation for Parallelization
 • Synchronization free
 • Synchronization needed
Parallelization & Space Partition

- To map each dynamic instance of a statement to a proc ID.
 - Constraints for synchronization free
 - Each pair of operations with dependences must be mapped to the same processor
 - Constraints for efficiency
 - Operations are not placed on the same proc unless necessary.

```c
for (i=1; i<=N; i++) {
    Y[i] = Z[i];
    X[i] = Y[i];
}
```

Assuming infinite processors; later can be mapped to physical proc.
Parallelization & Space Partition

To map each dynamic instance of a statement to a proc ID.

- Constraints for synchronization free
 - Each pair of operations with dependences must be mapped to the same processor
- Constraints for efficiency
 - Operations are not placed on the same proc unless necessary.

Assuming infinite processors; later can be mapped to physical proc.

```c
for (i=1; i<=100; i++)
    for (j=1; j<=100; j++){
        X[i, j] = X[i,j] + Y[i-1, j];    /* S1 */
        Y[i, j] = Y[i,j] + X[i, j-1];    /* S2 */
    }
```
Partition Schedule (at Space)

• \(<C, c>\) to represent a partition
 1. \(C\) is a \(n \times m\) matrix
 • \(m=d\) (the loop level)
 • \(n\) is the dimension of the processor grid
 2. \(c\) is a \(n\)-element constant vector
 3. \(p = C*i + c\)

• Examples

1-d processor grid

\[
\text{for } (i=1; i<=N; i++) \\
\ Y[i] = Z[i];
\]

\(C = [1], c = [0], p = i\)

2-d processor grid

\[
\text{for } (i=1; i<=N; i++) \\
\text{ for } (j=1; j<=N; j++) \\
\ Y[i,j] = Z[i,j];
\]

\(C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, c = [0 0], p = i, q = j\)

Notation:
\textbf{bold fonts} for container variables; \textit{normal fonts} for scalar variables.
Synchronization-Free Constraints

- Two static accesses as \(<F_1, f_1, B_1, b_1>\) and \(<F_2, f_2, B_2, b_2>\) respectively in \(d_1\)-deep and \(d_2\)-deep loops
- Let \(<C_1, c_1>\) and \(<C_2, c_2>\) represent their respective partition functions
- To be synch-free
 - For all \(i_1\) in \(\mathbb{Z}_{d_1}\) (\(d_1\)-dimension integer vectors) and \(i_2\) in \(\mathbb{Z}_{d_2}\) such that
 1. \(B_1*i_1 + b_1 \geq 0\), and
 2. \(B_2*i_2 + b_2 \geq 0\), and
 3. \(F_1*i_1 + f_1 = F_2*i_2 + f_2\),
 it must be the case that \(C_1*i_1 + c_1 = C_2*i_2 + c_2\).
• Goal: to find the partitions for each of the two statements. Denoted as

\[p(S1): < [C_{11} \ C_{12}], [c_1]> \]
\[p(S2): < [C_{21} \ C_{22}], [c_2]> \]

assume 1-d processor grid
Step 1: Create Constraints

Consider dependence between $X[i,j]$ & $X[i,j-1]$:

(i$_1$, j$_1$): 1<=i_1<=100, 1<=j_1<=100,

(i$_2$, j$_2$): 1<=i_2<=100, 1<=j_2<=100,

$i_1 = i_2$, $j_1 = j_2 - 1$,

$$[C_{11} \quad C_{12}]^i_j + [c_1] = [C_{21} \quad C_{22}]^i_j + [c_2]$$

for (i=1; i<=100; i++)
for (j=1; j<=100; j++){
 $X[i, j] = X[i,j] + Y[i-1, j]$; /* S1 */
 $Y[i, j] = Y[i,j] + X[i, j-1]$; /* S2 */
}
Step 1: Create Constraints

Consider dependence between $Y[i,j]$ & $Y[i-1,j]$:

\[(i_3, j_3): 1 \leq i_3 \leq 100, \quad 1 \leq j_3 \leq 100,\]
\[(i_4, j_4): 1 \leq i_4 \leq 100, \quad 1 \leq j_4 \leq 100,\]
\[i_3 = i_4 - 1, \quad j_3 = j_4,\]

\[
\begin{bmatrix}
C_{11} & C_{12} \\
C_{13} & C_{14}
\end{bmatrix}
\begin{bmatrix}
i_3 \\
j_3
\end{bmatrix}
+
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}
=
\begin{bmatrix}
C_{21} & C_{22} \\
C_{23} & C_{24}
\end{bmatrix}
\begin{bmatrix}
i_4 \\
j_4
\end{bmatrix}
+
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}
\]

for (i=1; i<=100; i++)
for (j=1; j<=100; j++){
 X[i, j] = X[i, j] + Y[i-1, j]; /* S1 */
 Y[i, j] = Y[i, j] + X[i, j-1]; /* S2 */
}

\[Y[i,j] = Y[i, j] + X[i, j-1]; \quad /* S2 */\]
Step 2 Reduce Unknowns

Apply Gaussian Elimination to

\[
\mathbf{F}_1 \cdot i_1 + f_1 = \mathbf{F}_2 \cdot i_2 + f_2
\]

\[
\begin{align*}
1 \leq i_1 & \leq 100, \quad 1 \leq j_1 \leq 100, \\
1 \leq i_2 & \leq 100, \quad 1 \leq j_2 \leq 100, \\
i_1 = i_2, & \quad j_1 = j_2 - 1,
\end{align*}
\]

\[
\begin{bmatrix} C_{11} & C_{12} \\ C_{12} & C_{22} \end{bmatrix} \begin{bmatrix} i_1 \\ j_1 \end{bmatrix} + [c_1] = \begin{bmatrix} C_{21} & C_{22} \\ C_{22} & C_{22} \end{bmatrix} \begin{bmatrix} i_2 \\ j_2 \end{bmatrix} + [c_2]
\]

\[
\begin{align*}
[C_{11} - C_{21} & \quad C_{12} - C_{22}] \begin{bmatrix} i_3 \\ j_3 \end{bmatrix} + [c_1 - c_2 + C_{21}] = 0
\end{align*}
\]
Step 3 Solving the Equations

\[
\begin{bmatrix}
C_{11} - C_{21} & C_{12} - C_{22}
\end{bmatrix}
\begin{bmatrix}
i_1 \\
j_1
\end{bmatrix} + [c_1 - c_2 - C_{22}] = 0
\rightarrow
C_{11} - C_{21} = 0, \quad C_{12} - C_{22} = 0, \quad & c_1 - c_2 - C_{22} = 0.
\]

\[
\begin{bmatrix}
C_{11} - C_{21} & C_{12} - C_{22}
\end{bmatrix}
\begin{bmatrix}
i_3 \\
j_3
\end{bmatrix} + [c_1 - c_2 + C_{21}] = 0
\rightarrow
C_{11} - C_{21} = 0, \quad C_{12} - C_{22} = 0, \quad & c_1 - c_2 + C_{21} = 0.
\]

\[C_{11} = C_{21} = -C_{22} = -C_{12} = c_2 - c_1\]
for (i=1; i<=100; i++)
 for (j=1; j<=100; j++) {
 X[i,j] = X[i,j] + Y[i-1,j]; /* S1 */
 Y[i,j] = Y[i,j] + X[i,j-1]; /* S2 */
 }

\[
C = \begin{bmatrix}
 C_{11} & C_{12} \\
 C_{21} & C_{22}
\end{bmatrix}
\]
\[
c = \begin{bmatrix}
 c_1 \\
 c_2
\end{bmatrix}
\]

\[
C_{11} = C_{21} = -C_{22} = -C_{12} = c_2 - c_1
\]

Affine schedule for S1: \(C = [C_{11} \ C_{12}] = [1 \ -1], \ c = c_1 = -1 \)
i.e. (i,j) iteration of S1 to processor \(p = i-j-1 \);

Affine schedule for S2: \(C = [C_{21} \ C_{22}] = [1 \ -1], \ c = c_2 = 0 \)
i.e. (i,j) iteration of S2 to processor \(p = i-j \).
for (i=1; i<=100; i++)
 for (j=1; j<=100; j++){
 X[i,j] = X[i,j] + Y[i-1, j]; /* S1 */
 Y[i,j] = Y[i,j] + X[i, j-1]; /* S2 */
 }

Affine schedule for S1:
\[C = C_{11} \quad C_{12} \] = [1, -1], \quad c = c_1 = -1
i.e. \((i,j) \) iteration of S1 to processor \(p = i-j-1 \);

Affine schedule for S2:
\[C = C_{21} \quad C_{22} \] = [1, -1], \quad c = c_2 = 0
i.e. \((i,j) \) iteration of S2 to processor \(p = i-j \).

\[C_{11} = C_{21} = -C_{22} = -C_{12} = c_2 - c_1 \]
Code Generation

- Step 1: find useful processor ID ranges
 - S1: $-100 \leq p \leq 98$
 - S2: $-99 \leq p \leq 99$
 - Union: $-100 \leq p \leq 99$

- Step 2: generate code

```c
for (i=1; i<=100; i++)
  for (j=1; j<=100; j++)
    X[i,j] = X[i,j] + Y[i-1, j];  /* S1 */
    Y[i,j] = Y[i,j] + X[i, j-1];  /* S2 */

for (p=-100; p<=99; p++)
  for (i=1; i<=100; i++)
    for (j=1; j<=100; j++)
      if (p== i-j-1)
        X[i,j] = X[i,j] + Y[i-1, j];  /* S1 */
      if (p== i-j)
        Y[i,j] = Y[i,j] + X[i, j-1];  /* S2 */
```

S1(i, j): assigned to processor p = i-j-1;
S2(i, j): assigned to processor p = i-j.
Code Optimization (will be discussed at next class)

```c
/*space 1*/
X[1,100]=X[1,100]+Y[0,100]; /*S1*/
/*space 2*/
for (p=-99; p<=98; p++){
  /*space 2a*/
  if (p>=0)
    Y[p+1,1] = Y[p+1,1] + X[p+1, 0]; /* S2 */
  /*space 2b*/
  for (i=max(1,p+2); i<=min(100,100+p); i++)
    X[i,i-p-1] = X[i,i-p-1] + Y[i-1, i-p-1]; /* S1 */
    Y[i,i-p] = Y[i,i-p] + X[i, i-p-1]; /* S2 */
  /*space 2c*/
  if (p<=-1)
    X[100+p,100] = X[101+p,100] + Y[101+p-1, 100]; /* S1 */
}
/*space 3*/
Y[100,1] = X[100,0] + Y[100,1]; /*S2*/
```

Affine Schedule for S1: \[C = [1 -1], \ c = -1 \]
i.e. \((i,j) \) of S1 to processor \(p = i-j-1 \);

Affine Schedule for S2: \[C = [1 -1], \ c = 0 \]
i.e. \((i,j) \) of S2 to processor \(p = i-j \).
for (i=1; i<=100; i++)
 for (j=1; j<=100; j++)
 {
 \(X[i, j] = X[i, j] + Y[i-1, j]; \) /* S1 */
 \(Y[i, j] = Y[i, j] + X[i, j-1]; \) /* S2 */
 }

1. Partition the nodes (loop iterations) to assign them to each processor.
 Affine Space Partition Algorithm to compute Cs & cs.

2. Basic code generation.
 Add processor loops & predicate statements.

3. Code optimizations (next class)
 Update loop bounds through Fourier-Motzkin Elimination.
 Remove tests through space splitting.
Task Level Parallelism
Task Level Parallelism

Dependence/precedence graph
 ▶ Directed acyclic graphs (DAG)
 ▶ A node represents a task
 ▶ A directed edge represents precedence constraint
 ▶ Example: reduction operation

\[S = \text{reduce}(A[1], A[2], \ldots, A[N]) \]
Task Level Parallelism

Dependence/precedence graph
- Directed acyclic graphs (DAG)
- A node represents a task
- A directed edge represents precedence constraint
- Example: loop with dependent iterations

![Dependence precedence graph illustration](image-url)
Directed Acyclic Graph

Nodes are computations
- May have multiple start nodes and end nodes
- A node may carry a weight

Practice: Is this a DAG?

(a)

(b)

(c)
Directed Acyclic Graph

Nodes are computations
▶ May have multiple start nodes and end nodes
▶ A node may carry a weight

Practice: Is this a DAG?
Schedule a DAG

T_p: time to perform computation with p processors

- T_1: work (total # operations)
 - Time when the computation sequentially
- T_∞: critical path / span
 - Time when parallelizing as much as possible

Lower bounds:

$$T_p \geq \frac{T_1}{p}, \quad T_p \geq T_\infty$$

Maximum parallelism:

- T_1 / T_∞
- Linear speedup

$$\frac{T_p}{T_1} = \Theta(p)$$

$T_1 = 11$

$T_\infty = 5$
Computing Critical Path

Compute earliest start times of nodes

- Keep a value called start-time S with each node
- Do a topological sort of the DAG
- For each node n in topological order and for each predecessor p of n

$$S_n = \max(S_n, S_p + w_p)$$

Complexity:
- $O(|V| + |E|)$
An Example of DAG Schedule

Space and time mapping (processor, start time)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>start</td>
<td>a</td>
<td>b</td>
<td>f</td>
<td>end</td>
</tr>
<tr>
<td>P1</td>
<td>c</td>
<td>e</td>
<td>i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>d</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Synchronization is Necessary

Synchronization Assumptions

- How a processor know when it is safe to execute an operation?
 - Use barrier to ensure all processors run in lock-step in every time tick.
 - Data is visible in shared memory M at the next time tick (step).
Optimal schedule

Problem definition

- Given a DAG, p processors, find the shortest possible schedule
- A well studied problem in computer science

Three restricted cases where the optimal solution can be found

- When the graph is a rooted directed tree, unit tasks execution time, for an arbitrary number of processors [Hu 1961]
- When the graph is a general DAG, unit task execution time, and the number of processors is 2. [Coffman and Graham 1971]
- When the graph is “interval ordered”, and all tasks have equal execution time [Papadimitriou and Yannakakis 1979]

Many heuristics available in literature:
Heuristic: list scheduling

Maintain a ready list L_{ready}

- At every time tick, choose p ready operations (use a priority functions)
- Assign them to available processors
- Update ready list L_{ready}

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>start</td>
<td>a</td>
<td>b</td>
<td>f</td>
<td>end</td>
</tr>
<tr>
<td>P1</td>
<td>c</td>
<td>e</td>
<td>i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>d</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Precedence/Dependence Graphs

Programmers specify DAG
Example: series-parallel, use the fork-join constructs, which by default are acyclic.

```
QuickSort QS
Data : ( A , n ): A list A of length n
Result : A in sorted order
p ← pivot [ A ]
  low ( A ) ← \{ x | x ∈ A , x ≤ p \}
  high ( A ) ← \{ x | x ∈ A , x > p \}

fork
S1 ← QS ( low ( A ) , length ( low ( A )))
S2 ← QS ( high ( A ) , length ( high ( A )))
join
return S1 + S2
```
Precedence/Dependence Graphs

- **Programmers specify DAG**
 Example: series-parallel, use the fork-join constructs, which by default are acyclic.

- **Automatic compile-time dependence analysis**
 Analyze the read and writes to the same memory location (in our affine transformation example)

 However, we cannot always determine precisely whether a dependence exist.
 (a) aliasing — two names that refer to the same storage, pointers and references
 (b) control flow — dependence may exist for some invocations and not for others

Potential solutions:
- **Conservative approximation**, assume dependence exist when in doubt, may loose some parallelization opportunity.

 OR we can **speculatively parallelize** by using extra cores in the multi-core/many-core processor.
Project 2 — Single Source Shortest Path (SSSP)

Finding shortest path from one node to another

- Dijkstra (1959)
- Bellman-Ford (1957)
- Delta-stepping (1998)
Dijkstra’s Algorithm (Sequential)

Prefer nodes that have smaller distance label
 - One node at most visited once (but might be updated multiple times)

while Q is not empty
 $u \leftarrow$ vertex in Q with min $\text{dist}[u]$
 remove u from Q
 for each neighbor v of u: //where v is still in Q.
 alt \leftarrow $\text{dist}[u] + \text{length}(u, v)$;
 if alt $<$ $\text{dist}[v]$;
 //A shorter path to v has been found
 $\text{dist}[v] \leftarrow$ alt;
 $\text{prev}[v] \leftarrow u$;
 return $\text{dist}[\]$, $\text{prev}[\]$;
Dijkstra’s Algorithm (Sequential)

- Example

```
Step 0: Initialization.

<table>
<thead>
<tr>
<th>v</th>
<th>s</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>d[v]</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>
```
Dijkstra’s Algorithm (Sequential)

• Example

Step 1: As $Adj[s] = \{a, b\}$, work on a and b and update information.

<table>
<thead>
<tr>
<th>v</th>
<th>s</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d[v]$</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>
Dijkstra’s Algorithm (Sequential)

• Example

Step 2: After Step 1, \(a \) has the minimum key in the priority queue. As \(Adj[a] = \{b, c, d\} \), work on \(b, c, d \) and update information.

<table>
<thead>
<tr>
<th>(v)</th>
<th>(s)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d[v])</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>7</td>
</tr>
</tbody>
</table>
Dijkstra’s Algorithm (Sequential)

• Example

Step 3: After Step 2, b has the minimum key in the priority queue. As $\text{Adj}[b] = \{a, c\}$, work on a, c and update information.

<table>
<thead>
<tr>
<th>v</th>
<th>s</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d[v]$</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
Dijkstra’s Algorithm (Sequential)

• Example

Step 4: After Step 3, c has the minimum key in the priority queue. As $\text{Adj}[c] = \{d\}$, work on d and update information.

<table>
<thead>
<tr>
<th>v</th>
<th>s</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d[v]$</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
Dijkstra’s Algorithm (Sequential)

- Example

Step 5: After Step 4, \(d \) has the minimum key in the priority queue. As \(Adj[d] = \{c\} \), work on \(c \) and update information.

<table>
<thead>
<tr>
<th>(v)</th>
<th>s</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d[v])</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
Bellman-ford Algorithm (Parallel Version)

- **Example**

![Diagram of a graph with nodes V0, V1, V2, V3, V4, and V5.]

Implementation 1

<table>
<thead>
<tr>
<th>Node values</th>
<th>Initialization</th>
</tr>
</thead>
<tbody>
<tr>
<td>V0</td>
<td>0</td>
</tr>
<tr>
<td>V1</td>
<td>4</td>
</tr>
<tr>
<td>V2</td>
<td>2</td>
</tr>
<tr>
<td>V3</td>
<td>10</td>
</tr>
<tr>
<td>V4</td>
<td>3</td>
</tr>
<tr>
<td>V5</td>
<td>11</td>
</tr>
</tbody>
</table>

Edge list E:

- 0 1 4
- 0 2 2
- 1 2 5
- 1 3 10
- 2 4 3
- 3 5 11
- 4 3 4

Vertex values:

- V[0]: 0
- V[1]: ∞
- V[2]: ∞
- V[3]: ∞
- V[4]: ∞
- V[5]: ∞

Listing 1: Sequential Bellman-ford

```java
for each vertex v in vertices:
    distance[v] := inf;
for i from 1 to size(vertices) - 1 {
    for each edge (u, v) with weight w in edges {
        if distance[u] + w < distance[v]:
            distance[v] := distance[u] + w;
    }
    if (no node's distance changed) break;
}
```
Bellman-ford Algorithm (Parallel Version)

• Example

Initialization

| Node values | 0 | ∞ | ∞ | ∞ | ∞ | ∞ |

Edge list E:

| 0 1 4 |
| 0 2 2 |
| 1 2 5 |
| 1 3 10 |
| 2 4 3 |
| 3 5 11 |
| 4 3 4 |

<table>
<thead>
<tr>
<th>Vertex value V (initially):</th>
</tr>
</thead>
</table>

| V[0]: 0 |
| V[1]: ∞ |
| V[2]: ∞ |
| V[3]: ∞ |
| V[4]: ∞ |
| V[5]: ∞ |

Listing 1: Sequential Bellman-ford

```plaintext
for each vertex v in vertices:
    distance[v] := inf;
3         distance[source] = 0;
4   for i from 1 to size(vertices) - 1 {
5         for each edge (u, v) with weight w in edges {
6             if distance[u] + w < distance[v]:
7                 distance[v] := distance[u] + w;
8             }
9         if (no node’s distance changed) break;
10    }
```
Bellman-ford Algorithm (Parallel Version)

• Example

![Graph Diagram]

Implementation 1

<table>
<thead>
<tr>
<th>Node values</th>
<th>Initialization</th>
<th>Iteration 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>V0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V1</td>
<td>∞</td>
<td>4</td>
</tr>
<tr>
<td>V2</td>
<td>∞</td>
<td>2</td>
</tr>
<tr>
<td>V3</td>
<td>∞</td>
<td>9</td>
</tr>
<tr>
<td>V4</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>V5</td>
<td>∞</td>
<td>20</td>
</tr>
</tbody>
</table>

Edge list E:

- 0 1 4
- 0 2 2
- 1 2 5
- 1 3 10
- 2 4 3
- 3 5 11
- 4 3 4

Vertex value

- V[0]: 0
- V[1]: ∞
- V[2]: ∞
- V[3]: ∞
- V[4]: ∞
- V[5]: ∞

Listing 1: Sequential Bellman-ford

```python
for each vertex v in vertices:
    distance[v] := inf;
    distance[source] = 0;
for i from 1 to size(verticies)-1 {
    for each edge (u, v) with weight w in edges {
        if distance[u] + w < distance[v]:
            distance[v] := distance[u] + w;
    }
    if (no node's distance changed) break;
}
```
Bellman-ford Algorithm (Parallel Version)

• Example

Implementation 1

<table>
<thead>
<tr>
<th>Initialization</th>
<th>Node values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iteration 1</th>
<th>Node values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iteration 2</th>
<th>Node values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Edge list E:
- 0 1 4
- 0 2 2
- 1 2 5
- 1 3 10
- 2 4 3
- 3 5 11
- 4 3 4

Vertex value
- \(V(0) \): 0
- \(V(1) \): ∞
- \(V(2) \): ∞
- \(V(3) \): ∞
- \(V(4) \): ∞
- \(V(5) \): ∞

Listing 1: Sequential Bellman-ford

```python
for each vertex \( v \) in vertices:
    distance[v] := inf;
    distance[source] = 0;
for i from 1 to size(vertices) - 1 {
    for each edge \( (u, v) \) with weight \( w \) in edges {
        if distance[u] + w < distance[v]:
            distance[v] := distance[u] + w;
    }
    if (no node's distance changed) break;
}
```
Bellman-ford Algorithm (Parallel Version)

- Example

Implementation 1

Node values

<table>
<thead>
<tr>
<th>Initialization</th>
<th>0</th>
<th>∞</th>
<th>∞</th>
<th>∞</th>
<th>∞</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iteration 1</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>Iteration 2</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>14</td>
<td>5</td>
<td>∞</td>
</tr>
<tr>
<td>Iteration 3</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>25</td>
</tr>
</tbody>
</table>

Edge list E:

- 0 1 4
- 0 2 2
- 1 2 5
- 1 3 10
- 2 4 3
- 3 5 11
- 4 3 4

Vertex value V (initially):

- V[0]: 0
- V[1]: ∞
- V[2]: ∞
- V[3]: ∞
- V[4]: ∞
- V[5]: ∞

Listing 1: Sequential Bellman-ford

```c
1 for each vertex v in vertices:
2    distance[v] := inf;
3    distance[source] = 0;
4 for i from 1 to size(verticies)-1 {
5    for each edge (u, v) with weight w in edges {
6        if distance[u] + w < distance[v]:
7            distance[v] := distance[u] + w;
8        }
9    if (no node's distance changed) break;
10 }
```
Bellman-ford Algorithm (Parallel Version)

• Example

![Diagram of a graph with nodes V0 to V5 and edges labeled with weights.]

Implementation 1

Node values

<table>
<thead>
<tr>
<th>Initialization</th>
<th>0</th>
<th>∞</th>
<th>∞</th>
<th>∞</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iteration 1</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>Iteration 2</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>Iteration 3</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Iteration 4</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

Edge list E:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Vertex value V (initially):

| V[0]: 0 |
| V[1]: ∞ |
| V[2]: ∞ |
| V[3]: ∞ |
| V[4]: ∞ |
| V[5]: ∞ |

Listing 1: Sequential Bellman-ford

```
1   for each vertex v in vertices:
2       distance[v] := inf;
3   distance[source] = 0;
4   for i from 1 to size(vertices) – 1 {
5       for each edge (u, v) with weight w in edges {
6           if distance[u] + w < distance[v]:
7               distance[v] := distance[u] + w;
8           
9       }
10   if (no node’s distance changed) break;
```
Reading

• **Compilers — Principles, Techniques, Tools**
 • Chapters 11.1 – 11.4, 11.6-11.7

• **Papers**