CS415 Compilers

Compiler Optimalizations:
- Vectorization/Parallelization,
- Common Subexpression Elimination,
- Procedure Abstractions

These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University.
Review - Data Dependences (stmt./instr. level)

Data Dependences \Rightarrow defined on memory locations / registers and not values

Statement/instruction b data depends on statement/instruction a if there exists:

- **true or flow dependence**
 - a writes a location/register that b later reads (RAW conflict)

- **anti dependence**
 - a reads a location/register that b later writes (WAR conflict)

- **output dependence**
 - a writes a location/register that b later writes (WAW conflict)

<table>
<thead>
<tr>
<th>true</th>
<th>anti</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a = a$</td>
<td>$= a$</td>
<td>$a = a$</td>
</tr>
</tbody>
</table>

Lecture 22
A statement S_1 **control depends** on statement S_2 iff
(a) S_2 computes a conditional branch and
(b) the execution of S_1 depends on this branch (in one case S_1 will be
executed, but not in the other).

\[
\begin{align*}
S_1 & : \text{if } (a == b) \\
S_2 & : a = a + b \\
S_3 & : b = a + b
\end{align*}
\]

Data and control dependences define ORDER CONSTRAINTS that need to be
respected in order to generate correct code.

Fundamental Theorem of Dependence

Theorem

Any reordering transformation that preserves
every dependence in a program preserves the
meaning of that program.
Our Goal: Find out whether a loop can be parallelized or vectorized based on data dependence analysis (assume: body of a loop is a basic block)

array a(1:100) of float
for i := 3, 99
 a(i) = a(i+1) + 1

Iteration space

anti-dependences with dependence distance = 1
Our Goal: Find out whether a loop can be parallelized or vectorized based on data dependence analysis (assume: body of a loop is a basic block)

array a(1:100) of float
for i := 3, 99
 a(i) = a(i+1) + 1

Iteration space

| 3 | 4 | 5 | ... | 98 | 99 |

anti-dependences with dependence distance = 1

forall i := 3, 99
 a(i) = a(i+1) + 1

a(3:99) = a(4:100) + 1

Loop cannot be parallelized since no order constraints among loop iterations => anti-dep. may be violated!

Loop can be vectorized since RHS is read before LHS is written => anti-dep. is preserved!
Parallelization vs Vectorization

Our Goal: Find out whether a loop can be parallelized or vectorized based on data dependence analysis (assume: body of a loop is a basic block)

```
array a(1:100) of float
for i := 3, 99
    a(i) = a(i) + 1
```

Iteration space

only intra-statement anti-dependences which are preserved by statement execution semantics

```
forall i := 3, 99
    a(i) = a(i) + 1
```

```
a(3:99) = a(3:99) + 1
```
Parallelization vs Vectorization

Our Goal: Find out whether a loop can be parallelized or vectorized based on data dependence analysis (assume: body of a loop is a basic block)

array a(1:100) of float
for i := 3, 99
 a(i) = a(i-1) + 1

Iteration space

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

true-dependences with dependence distance = 1

forall i := 3, 99
a(i) = a(i-1) + 1 \[\times \]

a(3:99) = a(2:98) + 1 \[\times \]

Loop cannot be parallelized since each array assignment depends on previous array assignment => inherently sequential execution

Loop cannot be vectorized
Perfectly nested loop, \(A \) is \(m \)-dimensional array

\[
\begin{align*}
\text{DO } i_1 &= L_1, U_1 \\
\text{DO } i_2 &= L_2, U_2 \\
&\quad \ldots \\
\text{DO } i_n &= L_n, U_n \\
S_1 &= A(f_1(i_1, \ldots, i_n), \ldots, f_m(i_1, \ldots, i_n)) = \ldots \\
S_2 &= \ldots = A(g_1(i_1, \ldots, i_n), \ldots, g_m(i_1, \ldots, i_n)) \\
\text{ENDDO} \\
&\quad \ldots \\
\text{ENDDO} \\
\text{ENDDO}
\end{align*}
\]

\[f_i(\alpha) = g_i(\beta) \text{ for all } i, 1 \leq i \leq m \]
\[
\alpha < \beta
\]

Finding integer solutions for this set of simultaneous equations with constraints is an integer programming problem, which is NP-complete.
Our assumptions:
- Singly nested loop
- Single assignment statement
- All arrays are one-dimensional
- No aliasing among arrays
- \(f(i) \) is an affine function of the induction variable \(i \): \(a \times i + c \), with a positive integer \(a > 0 \), and \(c \) an integer

\[\Rightarrow \text{Anti and output dependences don't matter here for vectorization} \]

Goal of dependence testing:
1. Prove that true dependence does not exist;
2. If cannot do that, show that dependence exists with a fixed distance vector;
3. If cannot do that, assume existence of dependence

Dependence testing algorithm:
For each pair of LHS and RHS array references \(<X(f(i)), Y(g(i))> \) do perform dependence test

for \(i := \text{lb}, \text{ub} \)

\[X(f(i)) = \ldots Y(g(i)) \ldots \]
Data Dependence Testing Algorithm

for i := lb, ub
 \(X(f(i)) = \ldots Y(g(i)) \ldots \)

Input: \(<X(f(i)), Y(g(i))>\)

Output: no dependence, dependence with distance vector \(d \), or dependence

Method: (cascading tests)

- if \(X \neq Y \) then report “no dependence” else
 - if \(f(i) = i + c \) and \(g(i) \) is a constant (or visa versa) then
 apply simple ZIV test else
 - if \(f(i) = a \times i + c_1 \) and \(g(i) = a \times i + c_2 \) then
 apply strong SIV test else
 report “dependence”
for $i := lb, ub$

$X(f(i)) = \ldots X(g(i)) \ldots$

$f(i) = i + c_1$ and $g(i) = c_2$, i.e., $g(i)$ is a constant; this means that the same memory location $X(c_2)$ is read in all iterations.

Examples:

$\langle A(i), A(5) \rangle$

$\langle A(i+1), A(7) \rangle$

No dependence exists if $(i + c_1 - c_2) \neq 0$ for all $lb \leq i \leq ub$:

$lb \leq |c_1 - c_2| \leq ub \Rightarrow$ dependence

Note: This is a special case of the weak-zero SIV test.
for $i := \text{lb, ub}$

\[X(f(i)) = \ldots X(g(i)) \ldots \]

$f(i) = a \times i + c_1$ and $g(i) = a \times i + c_2$

Examples:

\[
\begin{align*}
\langle A(i), A(i - 1) \rangle \\
\langle A(4i + 2), A(4i - 1) \rangle
\end{align*}
\]

Dependence exists with distance d if there exists an integer solution to the following equation:

\[
- f(i) = a \times i + c_1 \text{ and } g(i') = a \times i' + c_2
\]

\[
- d = i' - i = \frac{c_1 - c_2}{a}
\]

and d has to be (1) a positive integer and (2) $d \leq (\text{ub-\text{lb}})$

- if dependence exists, report “dependence with distance d”
for $i := lb, ub$

$X(f(i)) = ... X(g(i)) ...$

$d = i' - i = \frac{c_1 - c_2}{a}$

$d \leq ub - lb$
for i := 1, 100
 a(i) = a(i) + 1

When can we vectorize this for loop?
 a(1:100) = a(1:100) +1

How do we say this in ILOC?
 - use vecton and vectoff instructions
ILOC - Loop Implementation Code

for (i := 1, 100) { assignment }
next statement

"sequential" loop code

set vector execution
reset vector execution

branch L_x

L_0: loadI 1 $\Rightarrow r_1$
loadI 1 $\Rightarrow r_2$
loadI 100 $\Rightarrow r_3$
cmp_GE $r_1, r_3 \Rightarrow r_4$
cbr $r_4 \Rightarrow L_2, L_1$

L_1: assignment
add $r_1, r_2 \Rightarrow r_1$
cmp_LT $r_1, r_3 \Rightarrow r_5$
cbr $r_5 \Rightarrow L_1, L_2$
branch L_2

L_x: vecton or no-op
branch L_0

L_2: vectoff
next statement
Optimization: **Local Common Subexpression Elimination (CSE)**

Source code: \[a(i) * a(i) \]

\[
\begin{align*}
4. & \quad t_1 = \text{addr}(a) - 4 \\
5. & \quad t_2 = i * 4 \\
6. & \quad t_3 = t_1[t_2] \\
\ldots
\end{align*}
\]
\[a(i) \times a(i) \]

4. \[t_{1} = \text{addr}(a) - 4 \]
5. \[t_{2} = i \times 4 \]
6. \[t_{3} = t_{1}[t_{2}] \]
7. \[t_{4} = \text{addr}(a) - 4 \]
8. \[t_{5} = i \times 4 \]
9. \[t_{6} = t_{4}[t_{5}] \]
10. \[t_{7} = t_{3} \times t_{6} \]

[Diagram of Basic Block DAG Construction]

- \[t_{1}, t_{4} \]
- \[i \]
- \[4 \]
- \[t_{2}, t_{5} \]
- \[t_{3}, t_{6} \]
- \[*, t_{7} \]
- \[[\], t_{3}, t_{6} \]
Local common subexpression elimination (CSE):

\[a(i) \times a(i) \]

4. \[t1 = \text{addr}(a) - 4 \]
5. \[t2 = i \times 4 \]
6. \[t3 = t1[t2] \]
7. \[t4 = \text{addr}(a) - 4 \]
8. \[t5 = i \times 4 \]
9. \[t6 = t4[t5] \]
10. \[t7 = t3 \times t6 \]

\[\text{code generated:} \]

\[t1 = \text{addr}[a]-4 \]
\[t2 = i \times 4 \]
\[t3 = t1[t2] \]
\[t7 = t3 \times t3 \]
How to add a subexpression into a partially constructed DAG:

\[A = B + C \]

Is there a node already for \(B + C \)?
- If so, add \(A \) to its list of labels.
- If not:
 - is there a node labeled \(B \) already?
 - If not, create a leaf labeled \(B \).
 - Is there a node labeled \(C \) already?
 - If not, create a leaf labeled \(C \).
 - Create a node labeled \(A \), for +, with left child \(B \) and right child \(C \).

How to do this? HASHING \(<op, node(opd1), node(opd2)\>"
How to add a subexpression into a partially constructed DAG:

\[
A = B + C
\]

Is there a node already for \(B + C \)? \(<+, \text{node}(B), \text{node}(C)> \) defined?
- If so, add \(A \) to its list of labels.
- If not:
 - is there a node labeled \(B \) already? \(\text{node}(B) \) defined?
 If not, create a leaf labeled \(B \).
 - Is there a node labeled \(C \) already? \(\text{node}(C) \) defined?
 If not, create a leaf labeled \(C \).
 - Create a node labeled \(A \), for \(+\), with left child \(B \) and right child \(C \).

How to do this? HASHING \(<\text{op}, \text{node}(\text{opd1}), \text{node}(\text{opd2})>\)
DAG Construction Algorithm

Summary:
- every expression is assigned a value number
 examples: node(a),
 node(4),
 node(<+, valNum1, ValNum2>)
- assignment changes value number associated with LHS variable

- implementation of value numbers
 • use pointers of nodes in DAG
 • use virtual register numbers (code shape encoding!)

You could do this in a single pass in our compiler!
Procedure abstraction

Read EaC: Chapter 6.1 - 6.5