CS415 Compilers
Syntax Analysis
Top-Down Parsing

These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University
• Regarding the instruction scheduling project
 → ILOC simulator updated: does not affect your code implementation & only affect your report (statistics) if you have started writing report
 → Longest latency weighted path: multiple instructions that have no successors, pick the longest path to any one of them
 → Memory reference instructions: do not change the relative order of the memory instructions
Top-Down Parsing
(Syntax Analysis)

EAC Chapters 3.1 – 3.3
LL(1), recursive descent

1 input symbol lookahead

construct leftmost derivation (forwards)

input: read left-to-right

\[
S \Rightarrow^* \beta \Rightarrow \delta \Rightarrow^* y
\]

- \(S \Rightarrow^*_{lm} \beta \Rightarrow_{lm} \delta \Rightarrow^*_{lm} y \)
LL(1), recursive descent

1 input symbol lookahead

Construct leftmost derivation (forwards)

Input: read left-to-right

Rule: $A \rightarrow \delta$

$$S \Rightarrow^*_{lm} x A \beta \Rightarrow_{lm} x \delta \beta \Rightarrow^*_{lm} x y$$

Diagram:

```
S
  /|
 / A
/ β
δ
```

Input: x y
A top-down parser starts with the root of the parse tree
The root node is labeled with the goal symbol of the grammar

Top-down parsing algorithm:

1. Construct the root node of the parse tree
2. Repeat until the fringe of the parse tree matches the input string
 1. At a node labeled A, select a production with A on its LHS and, for each symbol on its RHS, construct the appropriate child
 2. When a terminal symbol is added to the fringe and it doesn’t match the fringe, backtrack
 3. Find the next node to be expanded

• The key is picking the right production in step 1
 → That choice should be guided by the input string
Remember the expression grammar?

Version with precedence

1. \(\text{Goal} \rightarrow \text{Expr} \)
2. \(\text{Expr} \rightarrow \text{Expr} + \text{Term} \)
3. \(\mid \text{Expr} - \text{Term} \)
4. \(\mid \text{Term} \)
5. \(\text{Term} \rightarrow \text{Term} \times \text{Factor} \)
6. \(\mid \text{Term} / \text{Factor} \)
7. \(\mid \text{Factor} \)
8. \(\text{Factor} \rightarrow \text{number} \)
9. \(\mid \text{id} \)

And the input: \(x - 2 \times y \)
Let's try $x - 2 * y$:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Sentential Form</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Goal</td>
<td>$\uparrow x - 2 * y$</td>
</tr>
<tr>
<td>1</td>
<td>Expr</td>
<td>$\uparrow x - 2 * y$</td>
</tr>
<tr>
<td>2</td>
<td>Expr + Term</td>
<td>$\uparrow x - 2 * y$</td>
</tr>
<tr>
<td>4</td>
<td>Term + Term</td>
<td>$\uparrow x - 2 * y$</td>
</tr>
<tr>
<td>7</td>
<td>Factor + Term</td>
<td>$\uparrow x - 2 * y$</td>
</tr>
<tr>
<td>9</td>
<td><id,x> + Term</td>
<td>$\uparrow x - 2 * y$</td>
</tr>
<tr>
<td>9</td>
<td><id,x> + Term</td>
<td>$x \uparrow - 2 * y$</td>
</tr>
</tbody>
</table>

Leftmost derivation, choose productions in an order that exposes problems
Let’s try \(x - 2 * y \):

<table>
<thead>
<tr>
<th>Rule</th>
<th>Sentential Form</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\text{Expr})</td>
<td>(\uparrow x - 2 * y)</td>
</tr>
<tr>
<td>2</td>
<td>(\text{Expr} + \text{Term})</td>
<td>(\uparrow x - 2 * y)</td>
</tr>
<tr>
<td>4</td>
<td>(\text{Term} + \text{Term})</td>
<td>(\uparrow x - 2 * y)</td>
</tr>
<tr>
<td>7</td>
<td>(\text{Factor} + \text{Term})</td>
<td>(\uparrow x - 2 * y)</td>
</tr>
<tr>
<td>9</td>
<td>(<\text{id},x> + \text{Term})</td>
<td>(\uparrow x - 2 * y)</td>
</tr>
<tr>
<td>9</td>
<td>(<\text{id},x> + \text{Term})</td>
<td>(x \uparrow - 2 * y)</td>
</tr>
</tbody>
</table>

This worked well, except that “-” doesn’t match “+”

The parser must backtrack to here
Continuing with $x - 2 \times y$:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Sentential Form</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Expr</td>
<td>$x - 2 \times y$</td>
</tr>
<tr>
<td>3</td>
<td>Expr – Term</td>
<td>$x - 2 \times y$</td>
</tr>
<tr>
<td>4</td>
<td>Term – Term</td>
<td>$x - 2 \times y$</td>
</tr>
<tr>
<td>7</td>
<td>Factor – Term</td>
<td>$x - 2 \times y$</td>
</tr>
<tr>
<td>9</td>
<td><id,x> – Term</td>
<td>$x - 2 \times y$</td>
</tr>
<tr>
<td>9</td>
<td><id,x> – Term</td>
<td>$x - 2 \times y$</td>
</tr>
<tr>
<td>—</td>
<td><id,x> – Term</td>
<td>$x - 2 \times y$</td>
</tr>
</tbody>
</table>
Continuing with $x - 2 * y$:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Sentential Form</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>Goal</td>
<td>↑x – 2 * y</td>
</tr>
<tr>
<td>1</td>
<td>Expr</td>
<td>↑x – 2 * y</td>
</tr>
<tr>
<td>3</td>
<td>Expr – Term</td>
<td>↑x – 2 * y</td>
</tr>
<tr>
<td>4</td>
<td>Term – Term</td>
<td>↑x – 2 * y</td>
</tr>
<tr>
<td>7</td>
<td>Factor – Term</td>
<td>↑x – 2 * y</td>
</tr>
<tr>
<td>9</td>
<td><id,x> – Term</td>
<td>↑x – 2 * y</td>
</tr>
<tr>
<td>9</td>
<td><id,x> – Term</td>
<td>x ↑− 2 * y</td>
</tr>
<tr>
<td>—</td>
<td><id,x> – Term</td>
<td>x – ↑2 * y</td>
</tr>
</tbody>
</table>

This time, “−” and “−” matched

⇒ Now, we need to expand Term - the last NT on the fringe
Example

Trying to match the “2” in \(x - 2 \cdot y \):

<table>
<thead>
<tr>
<th>Rule</th>
<th>Sentential Form</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\langle \text{id},x \rangle - \text{Term})</td>
<td>(x \leftarrow 2 \cdot y)</td>
</tr>
<tr>
<td>7</td>
<td>(\langle \text{id},x \rangle - \text{Factor})</td>
<td>(x \leftarrow 2 \cdot y)</td>
</tr>
<tr>
<td>9</td>
<td>(\langle \text{id},x \rangle - \langle \text{num},2 \rangle)</td>
<td>(x \leftarrow 2 \cdot y)</td>
</tr>
<tr>
<td></td>
<td>(\langle \text{id},x \rangle - \langle \text{num},2 \rangle)</td>
<td>(x \leftarrow 2 \cdot y)</td>
</tr>
</tbody>
</table>

Diagram:

```
Goal
  └───Expr
       └───Term
            │
            ├── Fact.
            │    │
            │    └───<num,2>
            └───<id,x>
```

GUESS

12
Example

Trying to match the “2” in $x - 2* y$:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Sentential Form</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$<id, x> - Term$</td>
<td>$x - \uparrow 2 * y$</td>
</tr>
<tr>
<td>7</td>
<td>$<id, x> - Factor$</td>
<td>$x - \uparrow 2 * y$</td>
</tr>
<tr>
<td>9</td>
<td>$<id, x> - <num, 2>$</td>
<td>$x - \uparrow 2 * y$</td>
</tr>
<tr>
<td></td>
<td>$<id, x> - <num, 2>$</td>
<td>$x - 2* y$</td>
</tr>
</tbody>
</table>

Where are we?

- “2” matches “2”
- We have more input, but no NTs left to expand
- The expansion terminated too soon
 \Rightarrow Need to backtrack
Example

Trying again with "2" in $x - 2 \times y$:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Sentenceal Form</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>$<id,x> - Term * Factor$</td>
<td>$x - \uparrow 2 \times y$</td>
</tr>
<tr>
<td>7</td>
<td>$<id,x> - Factor * Factor$</td>
<td>$x - \uparrow 2 \times y$</td>
</tr>
<tr>
<td>8</td>
<td>$<id,x> - <num,2> * Factor$</td>
<td>$x - \uparrow 2 \times y$</td>
</tr>
<tr>
<td>9</td>
<td>$<id,x> - <num,2> * <id,y>$</td>
<td>$x - \uparrow 2 \times y$</td>
</tr>
</tbody>
</table>

This time, we matched & consumed all the input

⇒ Success!
Other choices for expansion are possible

<table>
<thead>
<tr>
<th>Rule</th>
<th>Sentential Form</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>Goal</td>
<td>(\uparrow x - 2 \times y)</td>
</tr>
<tr>
<td>1</td>
<td>Expr</td>
<td>(\uparrow x - 2 \times y)</td>
</tr>
<tr>
<td>2</td>
<td>Expr + Term</td>
<td>(\uparrow x - 2 \times y)</td>
</tr>
<tr>
<td>2</td>
<td>Expr + Term + Term</td>
<td>(\uparrow x - 2 \times y)</td>
</tr>
<tr>
<td>2</td>
<td>Expr + Term + Term + Term</td>
<td>(\uparrow x - 2 \times y)</td>
</tr>
<tr>
<td>2</td>
<td>Expr + Term + Term + ... + Term</td>
<td>(\uparrow x - 2 \times y)</td>
</tr>
</tbody>
</table>

This doesn’t terminate

- Wrong choice of expansion leads to non-termination
- Non-termination is a bad property for a parser to have
- Parser must make the right choice
Top-down parsers cannot handle left-recursive grammars

Formally,

A grammar is left recursive if \(\exists A \in NT \) such that

\[\exists \text{ a derivation } A \Rightarrow^+ A\alpha, \text{ for some string } \alpha \in (NT \cup T)^+ \]

Our expression grammar is left recursive

- This can lead to non-termination in a top-down parser
- For a top-down parser, any recursion must be right recursion
- We would like to convert the left recursion to right recursion

Non-termination is a bad property in any part of a compiler
To remove left recursion, we can transform the grammar

Consider a grammar fragment of the form

\[Fee \rightarrow Fee \alpha \]
\[\quad | \quad \beta \]

where neither \(\alpha \) nor \(\beta \) start with \(Fee \)

We can rewrite this as

\[Fee \rightarrow \beta Fie \]
\[Fie \rightarrow \alpha Fie \]
\[\quad | \quad \varepsilon \]

where \(Fie \) is a new non-terminal

This accepts the same language, but uses only right recursion
The expression grammar contains two cases of left recursion

\[
\begin{align*}
\text{Expr} & \rightarrow \text{Expr} + \text{Term} & \text{Term} & \rightarrow \text{Term} \times \text{Factor} \\
& \mid \text{Expr} - \text{Term} & & \mid \text{Term} / \text{Factor} \\
& \mid \text{Term} & & \mid \text{Factor}
\end{align*}
\]

Applying the transformation yields

\[
\begin{align*}
\text{Expr} & \rightarrow \text{Term} \text{Expr'} \\
\text{Expr'} & \rightarrow + \text{Term} \text{Expr'} \\
& \mid - \text{Term} \text{Expr'} \\
& \mid \varepsilon
\end{align*}
\]

\[
\begin{align*}
\text{Term} & \rightarrow \text{Factor} \text{Term'} \\
\text{Term'} & \rightarrow * \text{Factor} \text{Term'} \\
& \mid / \text{Factor} \text{Term'} \\
& \mid \varepsilon
\end{align*}
\]

These fragments use only right recursion
Substituting them back into the grammar yields

- This grammar is correct, if somewhat non-intuitive.
- It is left associative, as was the original
- A top-down parser will terminate using it.
- A top-down parser may need to backtrack with it.
- General left recursion removal algorithm fig 3.6 EAC
We set out to study parsing

• Specifying syntax
 → Context-free grammars
 → Ambiguity

• Top-down parsers
 → Algorithm & its problem with left recursion
 → Left-recursion removal

• Predictive top-down parsing
 → The LL(1) condition
 → Table-driven LL(1) parsers
 → Recursive descent parsers
 ▪ Syntax directed translation (example)
Roadmap (Where are we?)

We set out to study parsing

• Specifying syntax
 → Context-free grammars
 → Ambiguity

• Top-down parsers
 → Algorithm & its problem with left recursion
 → Left-recursion removal

• Predictive top-down parsing
 → The LL(1) condition
 → Table-driven LL(1) parsers
 → Recursive descent parsers
 ▪ Syntax directed translation (example)
If it picks the wrong production, a top-down parser may backtrack

Alternative is to look ahead in input & use context to pick correctly

How much lookahead is needed?

• In general, an arbitrarily large amount
• Use the Cocke-Younger-Kasami algorithm or Earley’s algorithm

Fortunately,

• Large subclasses of CFGs can be parsed with limited lookahead
• Most programming language constructs fall in those subclasses

Among the interesting subclasses are $LL(1)$ and $LR(1)$ grammars
Basic idea

Given $A \rightarrow \alpha | \beta$, *the parser should be able to choose between* α *&* β

FIRST sets

For some rhs $\alpha \in G$, define $\text{FIRST}(\alpha)$ as the set of tokens that appear as the first (terminal) symbol in some string that derives from α

That is, $a \in \text{FIRST}(\alpha)$ iff $\alpha \Rightarrow^* a \gamma$, for some γ
The FIRST Set

\[a \in \text{FIRST}(\alpha) \iff \alpha \Rightarrow^* a \gamma, \text{ for some } \gamma \]

To build \(\text{FIRST}(X) \) for all grammar symbols \(X \):

1. if \(X \) is a terminal (token), \(\text{FIRST}(X) := \{ X \} \)
2. if \(X ::= \epsilon \), then \(\epsilon \in \text{FIRST}(X) \)
3. iterate until no more terminals or \(\epsilon \) can be added to any \(\text{FIRST}(X) \):

 \[
 \text{if } X ::= Y_1 Y_2 \ldots Y_k \text{ then }
 \]
 \[
 a \in \text{FIRST}(X) \text{ if } a \in \text{FIRST}(Y_i) \text{ and } \\
 \epsilon \in \text{FIRST}(Y_j) \text{ for all } 1 \leq j < i \\
 \epsilon \in \text{FIRST}(X) \text{ if } \epsilon \in \text{FIRST}(Y_i) \text{ for all } 1 \leq i \leq k
 \]

 end iterate

Note: if \(\epsilon \not\in \text{FIRST}(Y_1) \), then \(\text{FIRST}(Y_i) \) is irrelevant, for \(1 < i \)
Predictive Parsing

Basic idea

Given $A \rightarrow \alpha \mid \beta$, the parser should be able to choose between α & β

FIRST sets

For some rhs $\alpha \in G$, define $\text{FIRST}(\alpha)$ as the set of tokens that appear as the first symbol in some string that derives from α

That is, $a \in \text{FIRST}(\alpha)$ iff $\alpha \Rightarrow^* a \gamma$, for some γ

The LL(1) Property

If $A \rightarrow \alpha$ and $A \rightarrow \beta$ both appear in the grammar, we would like

$$\text{FIRST}(\alpha) \cap \text{FIRST}(\beta) = \emptyset$$

This would allow the parser to make a correct choice with a lookahead of exactly one symbol!

Is this correct?
The FOLLOW Set

For a non-terminal A, define $\text{FOLLOW}(A)$ as

$$\text{FOLLOW}(A) := \text{the set of terminals that can appear immediately to the right of } A \text{ in some sentential form.}$$

Thus, a non-terminal’s FOLLOW set specifies the tokens that can legally appear after it; a terminal has no FOLLOW set.
The FOLLOW Set

To build FOLLOW(X) for all non-terminal X:

1. Place eof in FOLLOW($<goal>$)
 iterate until no more terminals or ε can be added to any FOLLOW(X):
2. If $A \rightarrow \alpha B \beta$ then
 put $\{FIRST(\beta) - \varepsilon\}$ in FOLLOW(B)
3. If $A \rightarrow \alpha B$ then
 put FOLLOW(A) in FOLLOW(B)
4. If $A \rightarrow \alpha B \beta$ and $\varepsilon \in$ FIRST(\beta) then
 put FOLLOW(A) in FOLLOW(B)
If $A \rightarrow \alpha$ and $A \rightarrow \beta$ and $\varepsilon \in \text{FIRST}(\alpha)$, then we need to ensure that $\text{FIRST}(\beta)$ is disjoint from $\text{FOLLOW}(A)$, too.

Define $\text{FIRST}^+(\delta)$ for rule $A \rightarrow \delta$ as:

- $(\text{FIRST}(\delta) - \{ \varepsilon \}) \cup \text{FOLLOW}(A)$, if $\varepsilon \in \text{FIRST}(\delta)$
- $\text{FIRST}(\delta)$, otherwise
More Syntax Analysis (bottom-up)

Read EaC: Chapter 3.4