CS 516 Compilers and Programming Languages II

Parallel Computing-6 and hard compiler / runtime system problems
Announcements

Project 1 deadline: Wednesday, April 1. Do you need another extension?

Homework #3 is due Friday, April 3. Do you need an extension?

First paper presentation starting second week in April
 - what’s next
 - polyhedral parallelization (available on sakai under resources)
procedure \texttt{vectorize} \((L, D)\)

// \(L\) is the maximal loop nest containing the statements.
// \(D\) is the dependence graph for statements in \(L\).

find the partition \(p\) of set \(\{S_1, S_2, \ldots, S_m\}\) of maximal strongly-connected regions in the dependence graph \(D\) restricted to \(L\) (for example, using Tarjan’s algorithm);

construct \(L_p\) from \(L\) by reducing each \(S_i\) to a single node and compute \(D_p\), the dependence graph naturally induced on \(L_p\) by \(D\);

let \(\{p_1, p_2, \ldots, p_m\}\) be the \(m\) nodes of \(L_p\) numbered in an order consistent with \(D_p\) (use topological sort);

\[
\begin{align*}
\text{for } i &= 1 \text{ to } m \text{ do begin} \\
& \quad \text{if } p_i \text{ is a dependence cycle (excluding loop-carried anti-dependence cycle) then} \\
& \quad \quad \text{generate a DO-loop around the statements in } p_i; \\
& \quad \text{else} \\
& \quad \quad \text{directly rewrite } p_i \text{ in vector notation, vectorizing it with respect to every loop containing it;}
\end{align*}
\]

end vectorize
Example Loop L:

\[
\begin{align*}
&\text{DO } I = 2, 100 \\
&S_1 \quad A(I) = B(I-1) + C(I-1) + 1 \\
&S_2 \quad B(I) = C(I) \times B(I+1) \\
&S_3 \quad C(I) = A(I) + 5 \\
&S_4 \quad D(I) = B(I) + C(I+1) \\
&\text{ENDDO}
\end{align*}
\]

\(\delta_k\) - level k true dependence
\(\delta^0_k\) - level k output dependence
\(\delta^{-1}_k\) - level k anti dependence

Loop independent: \(k = \infty\)
Simple Vectorization Algorithm

Example Loop L:

\[\text{DO } I = 2, 100 \]
\[S_1 \quad A(I) = B(I-1) + C(I-1) + 1 \]
\[S_2 \quad B(I) = C(I) \times B(I+1) \]
\[S_3 \quad C(I) = A(I) + 5 \]
\[S_4 \quad D(I) = B(I) + C(I+1) \]

\[\text{ENDDO} \]

\[\delta_k \text{ - level } k \text{ true dependence} \]
\[\delta^o_k \text{ - level } k \text{ output dependence} \]
\[\delta^{-1}_k \text{ - level } k \text{ anti dependence} \]

Loop independent: \(k = \infty \)
Example Loop L:

DO I = 2, 100

\[S_1: A(I) = B(I-1) + C(I-1) + 1 \]
\[S_2: B(I) = C(I) \times B(I+1) \]
\[S_3: C(I) = A(I) + 5 \]
\[S_4: D(I) = B(I) + C(I+1) \]

ENDDO

Statement level dependence graph \(D \):

vectorize \((L, D)\)

\(D_p \):

\(D_p \) has to be acyclic
Simple Vectorization Algorithm

Example Loop L:

DO I = 2, 100
 S_1 A(I) = B(I-1) + C(I-1) + 1
 S_2 B(I) = C(I) * B(I+1)
 S_3 C(I) = A(I) + 5
 S_4 D(I) = B(I) + C(I+1)
ENDDO

In topological order:

S_2 B(2:100) = C(2:100) * B(3:101)
S_4 D(2:200) = B(2:100) + C(3:101)
DO I = 2, 100
 S_1 A(I) = B(I-1) + C(I-1) + 1
 S_3 C(I) = A(I) + 5
ENDDO

Statement level dependence graph D:

vectorize (L, D)

D_p: has to be acyclic
DO I = 1, N
 DO J = 1, M
 S_1 A(I+1,J) = A(I,J) + B
 ENDDO
ENDDO

Dependence from S_1 to itself with d(i, j) = (1,0)
Key observation: Since dependence is at level 1, we can vectorize the other loop!
Can be converted to:

DO I = 1, N
 S_1 A(I+1,1:M) = A(I,1:M) + B
ENDDO

The simple algorithm does not capitalize on such opportunities. Once it sees a recurrence (dependence cycle), it gives up.
Note one exception: loop carried anti-dependence cycle
DO I = 1, N
 DO J = 1, M
 S1
 A(I+1,J) = A(I,J) + B
 ENDDO
ENDDO

Observation: A level k dependence (dependence carried at level k) is satisfied if the k-level loop is executed sequentially.

Idea:
- Start from outermost level 1, apply the simple vectorization algorithm to level k, and if a strongly-connected region has a recurrence cycle, generate a sequential loop for level k for that region;
- Remove all level k dependences, and call the simple vectorization algorithm recursively for the region with only level k+1 or greater dependences.
- If no remaining recurrence cycles, generate vector statement for the remaining innermost levels.
Problems With Simple Vectorization

```
DO I = 1, N
    DO J = 1, M
        S_1 = A(I+1,J) = A(I,J) + B
    ENDDO
ENDDO
```

Dependence graph

Observation: A level \(k \) dependence (dependence carried at level \(k \)) is satisfied if the \(k \)-level loop is executed sequentially.

Idea:
- Start from outermost level 1, apply the simple vectorization algorithm to level \(k \), and if a strongly-connected region has a recurrence cycle, generate a sequential loop for level \(k \) for that region;
- Remove all level \(k \) dependences, and call the simple vectorization algorithm recursively for the region with only level \(k+1 \) or greater dependences.
- If no remaining recurrence cycles, generate vector statement for the remaining innermost levels.
DO I = 1, N

 k = 2

 $S_1: A(I+1,1:M) = A(I,1:M) + B$

 ENDDO

Observation: A level k dependence (dependence carried at level k) is satisfied if the k-level loop is executed sequentially.

Idea:
- Start from outermost level 1, apply the simple vectorization algorithm to level k, and if a strongly-connected region has a recurrence cycle, generate a sequential loop for level k for that region;
- Remove all level k dependences, and call the simple vectorization algorithm recursively for the region with only level k+1 or greater dependences.
- If no remaining recurrence cycles, generate vector statement for the remaining innermost levels.
procedure codegen\((R, k, D) \);
// \(R \) is the region for which we must generate code.
// \(k \) is the minimum nesting level of possible parallel loops.
// \(D \) is the dependence graph among statements in \(R \).

find the set \(\{S_1, S_2, ... , S_m\} \) of maximal strongly-connected regions in the dependence graph \(D \) restricted to \(R \);

construct \(R_p \) from \(R \) by reducing each \(S_i \) to a single node and compute \(D_p \), the dependence graph naturally induced on \(R_p \) by \(D \);

let \(\{p_1, p_2, ... , p_m\} \) be the \(m \) nodes of \(R_p \) numbered in an order consistent with \(D_p \) (use topological sort to do the numbering);

for \(i = 1 \) to \(m \) do begin
 if \(p_i \) is cyclic then begin
 generate a level-\(k \) DO statement;
 let \(D_i \) be the dependence graph consisting of all dependence edges in \(D \) that are at level \(k+1 \) or greater and are internal to \(p_i \);
 codegen\((p_i, k+1, D_i) \);
 end
 else
 generate a vector statement for \(p_i \) in \(r(p_i) - k + 1 \) dimensions, where \(r(p_i) \) is the number of loops containing \(p_i \);
end
DO I = 2, 100
S1 D(I) = 100
 DO J = 1, 100
S2 B(I,J) = C(I-1,J+1) + 5
 DO K = 1, 100
S3 A(I,J,K) = A(I-1,J,K+1) + B(I,J+1) * 2
 ENDDO
S4 C(I,J) = D(I+1)* B(I,J)
 ENDDO
S5 E(I) = D(I) + 2
 ENDDO
DO I = 1, 100
 S1 X(I) = Y(I) + 10
 DO J = 1, 100
 S2 B(J) = A(J,N)
 DO K = 1, 100
 S3 A(J+1,K) = B(J) + C(J,K)
 ENDDO
 S4 Y(I+J) = A(J+1, N)
 ENDDO
 ENDDO
DO I = 1, 100
 S_1 X(I) = Y(I) + 10
 DO J = 1, 100
 S_2 B(J) = A(J,N)
 DO K = 1, 100
 S_3 A(J+1,K) = B(J) + C(J,K)
 ENDDO
 S_4 Y(I+J) = A(J+1,N)
 ENDDO
ENDDO

Simple dependence testing procedure:
True dependence from S_4 to S_1
I_0 + J = I_0 + \Delta I
\Rightarrow \Delta I = J
As J is always positive
\Rightarrow Direction is “<”
DO I = 1, 100
S_1 X(I) = Y(I) + 10
 DO J = 1, 100
S_2 B(J) = A(J,N)
 DO K = 1, 100
S_3 A(J+1,K) = B(J) + C(J,K)
 ENDDO
S_4 Y(I+J) = A(J+1, N)
 ENDDO
 ENDDO
ENDDO

S_2 and S_3: dependence via B(J)
I does not occur in either subscript (D.V = *)
We get:
J_0 = J_0 + ΔJ
⇒ ΔJ = 0
⇒ Direction vectors = (*, =)
Initial call to vectorizer:

\[
\text{codegen}\ (\{S_1, S_2, S_3, S_4\}, 1)\]

⇒ \(S_1\) will be vectorized

\[
\begin{align*}
\text{DO } I &= 1, 100 \\
&\text{codegen}\ (\{S_2, S_3, S_4\}, 2, D_2) \\
\text{ENDDO}
\end{align*}
\]

\[
S_1\ X(1:100) = Y(1:100) + 10
\]
• \texttt{codegen} (\{S_2, S_3, S_4\}, 2))

• level-1 dependences are stripped off

\begin{verbatim}
DO I = 1, 100
 DO J = 1, 100
 codegen({S_2, S_3}, 3, D_3})
 ENDDO
S_4 Y(I+1:1+100) = A(2:101,N)
ENDDO
S_1 X(1:100) = Y(1:100) + 10
\end{verbatim}
Advanced Vectorization Algorithm

- `codegen (\{S_2, S_3\}, 3)`
- Level-2 dependences are stripped off

\[
\begin{align*}
&\text{DO } I = 1, 100 \\
&\quad \text{DO } J = 1, 100 \\
&\quad \quad S_2 \, B(J) = A(J,N) \\
&\quad \quad S_3 \, A(J+1,1:100) = B(J) + C(J,1:100) \\
&\quad \text{ENDDO} \\
&\quad S_4 \, Y(I+1:I+100) = A(2:101,N) \\
&\text{ENDDO} \\
&\quad S_1 \, X(1:100) = Y(1:100) + 10
\end{align*}
\]
What is a hard compiler problem?

Answer: Problems that are NP-complete (non-deterministic polynomial)

Definition: A problem X is NP-complete iff
(1) X is in NP, and
(2) Every problem Y in NP can be reduced in polynomial time to X
How to prove that a (decision) problem \(X \) is in NP-complete?

(1) Show that you can verify in polynomial time that a given solution/witness of \(X \) is valid (polynomial time verification)
(2) Show a polynomial time reduction of any instance of a existing/known NP-complete problem to an instance of \(X \)

Example “classical” NP-complete problems
- 3 SAT (3 Conjunctive Normal Form Satiability Problem)
- Traveling salesman
- Graph coloring
- Integer programming

Example “compiler” NP-complete problems
- Register allocation
- Instruction scheduling
- Automatic data layout
Example proof outline (Kremer1993/1995)

Theorem: Minimal cost dynamic data layout problem is NP-complete

Problem statement:

- Program consists of multiple phases
- Phases access multi-dimensional arrays
- Each array has a finite set of candidate layouts (by row, by column, blocked, ...)
- Cost of array access in phase computation depends on array’s layout
- Array remapping (e.g.: from row to column) may be performed between phases
- Remapping is not free, i.e., has a cost

Determine the layout of each array in each phase such that the overall computation and remapping costs are minimized.
Proof Outline:
Ad (1): Given a layout for each array, verify that it is smaller than a specific cost: just add up the phase costs with necessary remappings. This is polynomial time.

Ad (2): Reduce 3 SAT to the dynamic layout problem. Example polynomial time mapping:

Instance

\[(v_1 \lor \neg v_2 \lor v_3) \land (\neg v_1 \lor v_2 \lor v_4) \land (v_1 \lor v_3 \lor \neg v_4)\]

is mapped to a data layout problem with 3 phases, one for each term; each variable \(v_x\) has two possible layouts (true and false), resulting in 8 candidate layouts per phase; cost of a phase layout is 0 if corresponding term evaluates to true, otherwise 1; remapping for individual arrays/terms has cost of 1.
Proof Outline:
Ad (1): Given a layout for each array, verify that it is smaller than a specific cost: just add up the phase costs with necessary remappings. This is polynomial time

Ad (2): Reduce 3 SAT to the dynamic layout problem. Example polynomial time mapping:
Instance
\[(v_1 \lor \neg v_2 \lor v_3) \land (\neg v_1 \lor v_2 \lor v_4) \land (v_1 \lor v_3 \lor \neg v_4)\]
is satisfiable iff
There exists a data layout with 0 cost.
If 0 cost, no remapping (i.e., for each variable there is a fixed truth value assignment) and each phase has a 0 cost (i.e., true) term;
If the expression is satisfiable, there exists a truth value assignment such that no remapping is necessary and each phase has a 0 cost selected term candidate.
“Any advanced / interesting compiler optimization problem is NP-complete” (Keith Cooper, Rice University)

So what to do?

Option 1 (current wisdom): Use a heuristic
This can work well since problem instances that occur in practice may have structure, i.e., exhibit properties that may not lead to exponential cost.

Option 2: Use state-of-the-art integer programming tools
This will produce the optimal solution (no computation approximation). If there is structure in the problem, the solver will exploit it. If the optimal solution takes too long to compute, return the best feasible solution within a specified time budget (heuristic solution, if needed).

WE WILL USE OPTION 2. ⇒ GUROBI - MIXED INTEGER PROGRAMMING TOOL