Given a continuous function \(f(x) \), a value \(x = w \) for which \(f(w) = 0 \) is called a root or zero of \(f \) and is a solution to the equation

\[
f(x) = 0.
\]

We exclude the case where \(f(x) = ax + b, a \neq 0 \), because the solution is \(x = -b/a \) and can be computed directly from the data describing \(f \). This is the linear case. (Compare, e.g., to the case \(f(x) = x^3 + 17 \).

This problem arises in (at least) two natural ways: (i) If we have two functions \(g(x) \) and \(h(x) \), it is of interest to know when \(g(x) = h(x) \). In this case we have a root problem for \(f(x) = g(x) - h(x) \), an example: \(g(x) = e^{-x} \) and \(h(x) = \sin(x) \); (ii) We have a function \(F(x) \) and we want to find where it is minimized or maximized. In this case we have a root problem for \(f(x) = F'(x) \).

All the methods we study share the feature that they “generate” a sequence of approximations \(P_0, P_1, \ldots \) that is intended to converge to a root \(w \) of \(f \) (by continuity, \(f(P_n) \rightarrow f(w) = 0 \) as \(n \rightarrow \infty \)).

1. Method 1 - Bisection: The method starts (STEP 0) with an interval \(I_0 = (u_0, v_0) \), \(u_0 < v_0 \), and \(f \) has opposite signs at the endpoints; thus \(f(u_0)f(v_0) < 0 \). By the intermediate value theorem, \(f \) has a root \(w \in I_0 \). We bisect \(I_0 \) with the midpoint, \(P_0 = (u_0 + v_0)/2 \). This is the initial approximation to \(w \). If \(f(P_0) = 0 \) we STOP. Otherwise we continue into the next step, STEP 1, with one of the halves (i) \(I_1 = (u_0, P_0) \) if \(f(u_0)f(P_0) < 0 \) or else (ii) \(I_1 = (P_0, v_0) \) if \(f(P_0)f(v_0) < 0 \) (Precisely one of these two situations must hold - WHY?). Clearly \(|I_1| = \frac{1}{2}|I_0| = (v_0 - u_0)/2 \) (\(|I| = v - u \) denotes the length of the interval \(I = (u, v) \)).

In STEP \(n > 0 \) we have (from the previous step) an interval \(I_n = (u_n, v_n) \), and \(f \) has opposite signs at the endpoints \(f(u_n)f(v_n) < 0 \). By the intermediate value theorem, \(f \) has a root \(w \in I_n \). We bisect \(I_n \) with

\[
P_n = (u_n + v_n)/2. \tag{1}
\]

If \(f(P_n) = 0 \) we STOP. Otherwise we continue into the next step, STEP \(n + 1 \), with one of the halves (i) \(I_{n+1} = (u_n, P_n) \) if \(f(u_n)f(P_n) < 0 \) or else (ii) \(I_{n+1} = (P_n, v_n) \) if \(f(P_n)f(v_n) < 0 \) (Again, precisely one of these two situations must hold). Clearly \(|I_{n+1}| = \frac{1}{2}|I_n| = (v_n - u_n)/2 \).

- Let \(e_n = P_n - w \) denote the error if we stop at STEP \(n \) and take \(P_n \), the \(n^{th} \) bisection, as an approximation of the root \(w \). Notice that \(|e_n| < |I_n|/2 \) because \(P_n \) and \(w \) are in the same half of \(I_n \). Clearly \(|I_n|/2 = (|I_{n-1}|/2)/2 = \cdots = |I_0|/2^n \rightarrow 0 \) as \(n \rightarrow \infty \). This proves that the bisection method converges when started correctly.

- We can know in advance how many bisections steps will assure a suitably small error. Given \(\varepsilon > 0 \), suppose it is required that \(|e_n| < \varepsilon \) if we stop at STEP \(n \). Then from \(|e_n| < (v_0 - u_0)/2^{n+1} \), we deduce that \(n > \log_2((v_0 - u_0)/\varepsilon) - 1 \) steps are sufficient. In a computer implementation of the bisection method, we might also like to require that \(|f(P_n)| \) is small before we accept \(P_n \) as a suitable approximation to \(w \).
2. Method 2 - Regula-Falsi Suppose $u_n < v_n$ and $f(u_n)f(v_n) < 0$. We will use more information about f than the mere fact that it has opposite signs at the endpoints of $I_n = (u_n, v_n)$. Motivated by the observation that when I_n is small enough, f “looks like” a straight line on this interval, we divide I_n by the point where the line through $A = (u_n, f(u_n))$ and $B = (v_n, f(v_n))$ meets the x-axis. This is the point whose x-coordinate is

$$P_n = \frac{u_n f(v_n) - v_n f(u_n)}{f(v_n) - f(u_n)}.$$ \hspace{1cm} (2)

Regula-falsi IS bisection except that it uses the above instead of $P_n = (u_n + v_n)/2$.

- Regula-falsi converges if it is started correctly, but not because $|I_n| \to 0$ (simple examples show this statement to be false). This underlies the problem with using regula-falsi in practice - at what step, n, should it be stopped? Since $|I_n|$ may remain large, we can only stop when $|f(P_n)|$ is small but unfortunately, this is no guarantee that e_n is small.

- You should study handout 1 (through the homepage) - “Informative Traces of Bisection and Regula-Falsi”.

3. Fixed Point Iteration A value $x = u$ is a fixed point of a function $h(x)$ if $h(u) = u$. Fixed points are thus the x-coordinates of the points where the graph of h meets the line $y = x$. There is a beautiful algorithm to find fixed points. It is called fixed point iteration (FPI), or functional iteration:

- Guess P_0
- $n \leftarrow 0$
- WHILE $P_n \neq h(P_n)$ DO
 - $P_{n+1} \leftarrow h(P_n)$
 - $n \leftarrow n + 1$
- ENDWHILE
- RETURN P_n (it is a fixed point)

We might hope that $P_n \to w$ but we should not expect it to stop in a finite number of steps with $P_n = h(P_n)$. To stop the above algorithm in practice, we would require $|P_n - h(P_n)|$ to be small, say less than ε. The condition in the WHILE would then be WHILE $|P_n - h(P_n)| \geq \varepsilon$ DO. We then return P_n, an approximate fixed point, after n steps.

(a) Contraction mapping Principle: A function $h(x)$ is a contraction on an interval $I = (a, b)$ if there is a constant $k < 1$ such that for all pairs $u, v \in (a, b)$,

$$|h(u) - h(v)| \leq k|u - v|;$$

ie., $h(u)$ and $h(v)$ are closer than u and v were. Therefore application of h “contracts”, or brings function values closer than their arguments were. The mean value theorem implies that h is a contraction if $|h'(x)| \leq k$ for all $x \in (a, b)$, some $k < 1$.

The contraction mapping principle states that if (A) $h(w) = w$, (B) h is a contraction on an interval $I = (w - \delta, w + \delta)$ for some $\delta > 0$, and (C) $P_0 \in I$, then $P_n \to w$ (in other
words, the FPI algorithm above produces approximations \(P_n = h(P_{n-1}) \) that converge to a fixed point \(w = h(w) \). In fact if we knew that some \(P_j \in I \) that is enough in condition C), since we could just (re)start the iterations at \(P_j \).

Sometimes it is difficult to find an interval \(I \) satisfying condition (B). An alternative version of the theorem uses condition (B'), “\(h \) is a contraction on an interval \(I \) that contains the fixed point \(w \) and satisfies the condition that \(h(x) \in I \) whenever \(x \in I \).”

(b) **Relevance to Root-Finding:** Suppose we want to find roots of \(f(x) \). Define

\[
g(x) = x - \phi(x)f(x),
\]

where (i) \(\phi \) is continuous and (ii) \(\phi(x) = 0 \) implies \(f(x) = 0 \). Clearly \(g(w) = w \) if and only if \(f(w) = 0 \); i.e., the roots of \(f \) are the fixed points of \(g \). Our approach will be to specify the function \(\phi(x) \) in (3) and then do FPI on the resulting \(g(x) \):

\[
P_{n+1} \leftarrow g(P_n).
\]

Each different way we choose \(\phi(x) \) in (3) and apply FPI to the resulting \(g(x) \) gives a new root-finding method for \(f(x) \) [trite example: \(\phi(x) = 1 \)]. If \(P_n \to w = g(w) \), this FPI has produced a root-finding method that converged to a root of \(f(x) \); i.e., it “worked”.

(c) **Convergence Rate of FPI:** If FPI converges, \(P_n \to w = g(w) \), so the errors \(e_n \equiv P_n - w \to 0 \). The question is how rapidly?

Since \(P_{n+1} = g(P_n) \) (def. of FPI) and \(w = g(w) \) (def. of fixed point),

\[
|e_{n+1}| = |P_{n+1} - w| = |g(P_n) - g(w)|. \tag{4}
\]

Applying the mean value theorem [see also Taylor’s theorem, \(n = 0 \) (Course Notes 3, eq (8))], there is a point \(\theta_n \) between \(P_n \) and \(w \) for which \(g(P_n) - g(w) = g'(\theta_n)(P_n - w) \).

Using this in (4), and assuming \(g' \) is continuous,

\[
\frac{|e_{n+1}|}{|e_n|} = |g'(\theta_n)| \to |g'(w)|. \tag{5}
\]

I. Assuming \(|g'(w)| \neq 0 \) (and we may assume it is < 1), \(|g'(w)| \) is the fraction by which \(|e_n| \) is reduced if we take one more FPI step and stop with \(e_{n+1}, n \) large. This is linear convergence, where - in the limit - errors are reduced by a fixed fraction in each step.

II. If \(g'(w) = 0 \) both numerator and denominator of the ratio in (5) converge to zero, but the numerator converges strictly faster. In this case Taylors theorem, \(n = 1 \), shows (since \(g'(w) = 0 \)) that \(g(P_n) - g(w) = \frac{1}{2}g''(\theta_n)(P_n - w)^2 \) so using (4), and assuming the continuity of \(g'' \),

\[
\frac{|e_{n+1}|}{|e_n|^2} = \frac{1}{2}|g''(\theta_n)| \to \frac{1}{2}|g''(w)|. \tag{6}
\]

Assuming \(g''(w) \neq 0 \) the error on the next step is about \(|g''(w)|/2 \) times the square of the current error, \(n \) large. This is quadratic convergence. In general, the order of convergence \(k \), of FPI, is defined by

\[
k = \min (j > 0 : g^{(j)}(w) \neq 0); \tag{3}
\]
order \(k = 1 \) is linear convergence, order 2 is quadratic, etc. If the order of convergence is \(k \) and \(g^{(k)} \) is continuous, then
\[
\frac{e_{n+1}}{e_n} = \frac{1}{k!} |g^{(k)}(\theta_n)| \to \frac{1}{k!} |g^{(k)}(w)|,
\]
a non-zero constant.

4. **Method 3 - Chord Method:** There is a parameter \(m \neq 0 \) for which we choose a fixed, constant value. Using \(\phi(x) = 1/m \) in (3), do FPI on \(g(x) = x - f(x)/m \). Thus
\[
P_{n+1} = P_n - \frac{1}{m} f(P_n) = g(P_n). \tag{7}
\]
Rearranging the above expression we see that
\[
m = \frac{f(P_n) - 0}{P_n - P_{n+1}}
\]
so the chord method chooses \(P_{n+1} \) as the x-coordinate of the point where the line of slope \(m \) through \((P_n, f(P_n))\) meets the x-axis.

- **convergence:** For the chord method \(|g'(x)| = |1 - f'(x)/m| \). Thus we know that if \(w \) is a root of \(f \) and if \(0 < f'(x)/m < 2 \) for all values of \(x \in I = (w - \delta, w + \delta) \), then iterations in (7) will converge as long as \(P_0 \in I \) (in fact if we knew that some \(P_j \in I \) that is enough, since we just (re)start the iterations at \(P_j \)).

- **convergence rate:** Suppose the iterations in (7) converge. Since \(g'(w) = 1 - f'(w)/m = 0 \) only if \(m = f'(w) \), we conclude that the chord method is linear except for a single choice of \(m \) as \(f'(w) \), in which (lucky) case it has at least a quadratic convergence rate.

5. **Method 4 - Newton’s Method:** Take \(\phi(x) = 1/f'(x) \) in (3) and do FPI on \(g(x) = x - f(x)/f'(x) \). Thus
\[
P_{n+1} = P_n - \frac{f(P_n)}{f'(P_n)} = g(P_n). \tag{8}
\]
Rearranging the above expression we see that
\[
f'(P_n) = \frac{f(P_n) - 0}{P_n - P_{n+1}}
\]
so Newton’s method chooses \(P_{n+1} \) as the x-coordinate of the point where the tangent line to \(f \) at \(x = P_n \) meets the x-axis.

- **convergence:** For Newton’s method
\[
g'(x) = \frac{f(x)f''(x)}{(f'(x))^2}.
\]
If (i) \(f'' \) is continuous, (ii) \(f(w) = 0 \), and (iii) \(f'(w) \neq 0 \) then \(g'(w) = 0 \) and \(g' \) is continuous. Therefore there is an interval \(I = (w - \delta, w + \delta) \) on which \(|g'(x)| < 1 \). This proves that Newton’s method converges if \(P_0 \) is close enough to \(w \) (unfortunately it is hard in some cases to know precisely what “close enough” means). This convergence result is still true when \(f'(w) = 0 \) (i.e., (iii) fails and we have a tangency root), but the proof argument used above no longer works.
• **convergence rate:** Suppose the iterations in (8) converge and that \(f'(w) \neq 0 \). The equation above shows \(g'(w) = 0 \), so in the case of a non-tangency root, Newton’s method is at least quadratic. It is not difficult to show that when Newton’s method converges to a tangency root \(w \) (i.e., \(f(w) = 0 \) and \(f'(w) = 0 \)), the rate is linear.

6. **Secant Method:** If we don’t know \(f' \) but still want to use Newton’s method, we could replace \(f'(P_n) \) in (8) by the approximation

\[
f'(P_n) \approx \frac{f(P_n) - f(P_{n-1})}{P_n - P_{n-1}}.
\]

This gives the iteration for the secant method,

\[
P_{n+1} = \frac{P_{n-1}f(P_n) - P_nf(P_{n-1})}{f(P_n) - f(P_{n-1})}, \quad n \geq 1.
\]

(9)

It is *not* a fixed point iteration (in fact, compare (9) with (2)). It needs \(P_0 \) and \(P_1 \) to start, and each iteration is a function of the previous two. \(P_{n+1} \) is the \(x \)-coordinate of the point where the line joining \(A = (P_{n-1}, f(P_{n-1})) \) and \(B = (P_n, f(P_n)) \) meets the \(x \)-axis. When the iterations in (9) converge to a non-tangency root \(w \),

\[
\frac{\varepsilon_{n+1}}{\varepsilon_n} \to c > 0
\]

so its rate is clearly faster than linear but slower than quadratic. In fact it may be shown that \(\varepsilon_{n+1}/\varepsilon_n^{(1+\sqrt{5})/2} \to C > 0 \). The exponent is about 1.618.

7. **Acceleration of Convergence:** Instead of taking \(P_{n+1} = g(P_n) \), as in FPI, we will use \(P'_{n+1} \) as the \(x \)-coordinate of the point where the line joining \(A = (P_{n-1}, g(P_{n-1})) \) and \(B = (P_n, g(P_n)) \) meets the \(y = x \) (looking at the graph of \(g \) near a fixed point shows why this may be a good idea). Using \(P_{n+1} = g(P_n), \ P_n = g(P_{n-1}) \), and a little algebra,

\[
P'_n = P_{n+1} - \frac{(P_{n+1} - P_n)^2}{P_{n+1} - 2P_n + P_{n-1}}.
\]

(10)

\(P'_{n+1} \) is called the acceleration of \(P_{n+1} \). Writing \(\Delta P_j = P_j - P_{j-1} \) and \(\Delta^2 P_j = \Delta(\Delta P_j) = \Delta P_j - \Delta P_{j-1} = P_j - 2P_{j-1} + P_{j-2} \), we get Aitken’s delta-squared formula:

\[
P'_n = P_{n+1} - \frac{(\Delta P_{n+1})^2}{\Delta^2 P_{n+1}}.
\]

\(P'_{n+1} \) may be better than \(P_{n+1} \) because of the following: Suppose \(a_0, a_1, \ldots \) is a sequence of numbers that converges to \(w \) at a linear rate (and \(a_i \neq w \)). Apply the acceleration formula to \(a_2, a_3, \ldots \) (i.e., \(a'_i = a_i - (\Delta a_i)^2/\Delta^2 a_i, i \geq 2 \)) to obtain \(a'_2, a'_3, \ldots \). Then

\[
\frac{|a'_i - w|}{|a_i - w|} \to 0;
\]

i.e., the accelerated sequence converges to the same limit, only faster. There are two main ways to use the acceleration idea.
• **Aitkin’s Method:** P_n denotes the approximations of any linear method (regula-falsi, chord, Newton with a tangency root, etc.). Just accelerate each P_i and stop at step n if $|f(P'_n)| < \varepsilon$ (or if $|P'_n - P'_{n-1}|$ is small).

• **Steffanson’s Method:** The basic method is some linearly converging FPI, like Newton with a tangency root. From P_0 we do two FPI steps, $P_1 = g(P_0), P_2 = g(P_1)$. At this point we accelerate P_2 by

$$Q_0 = P_2 - \frac{(\Delta P_2)^2}{\Delta^2 P_2}.$$

The basic iteration starts from Q_i. Two FPI steps yield $P_1 = g(Q_i)$ and $P_2 = g(P_1)$ and $Q_{i+1} = P_2 - (\Delta P_2)^2/(\Delta^2 P_2)$ is the acceleration of P_2. We stop when $|Q_i - Q_{i-1}| < \varepsilon$. You should study Handout number 3 illustrating the value of acceleration.