1. **Variance:** Suppose X is a random variable on a probability space (S, P) and with expected value $E(X) = m$. The variance of X is the expected squared deviation from m, defined by

$$V(X) \equiv E([X - m]^2).$$

(Eq. 1)

Evaluating (1) over S, we see

$$V(X) = \sum_{w \in S} [X(w) - m]^2 P(w)$$

Evaluating (1) over Range(X) we get

$$V(X) = \sum_{a_i \in \text{Range}(X)} (a_i - m)^2 P(X = a_i) = \sum_{a_i \in \text{Range}(X)} (a_i - m)^2 f_X(a_i).$$

- **Fact 1:** Another (possibly easier) way to evaluate variance is $V(X) = E(X^2) - m^2$. We get this from (1) by $E([X-m]^2) = E(X^2 - 2mX + m^2) = E(X^2) - 2mE(X) + m^2$, and the fact that $m = E(X)$.

- **Fact 2:** $V(aX + b) = a^2V(X)$. Think of multiplication by a as a “scale change” and addition by b as “shifting” the measurements implied by $X)$). Then - e.g. - doubling X multiplies variance by 4; shifting does not effect variance (why?? this should be intuitive from (1)).

- **Fact 3:** Given two random variables X and Y defined on the same sample space S, the covariance of X and Y is defined by

$$\text{cov}(X, Y) = E(XY) - E(X)E(Y).$$

If the covariance of X and Y is zero we say that X and Y are uncorrelated.

- **Fact 4:** If X and Z are independent they are uncorrelated (so $\text{cov}(X, Y) = 0$), but not conversely; as shown by this simple example: Let \mathcal{E} be the experiment of tossing a fair coin twice (equally likely prob.), and taking X = the number of Heads, Y = the number of Tails, and $Z = (X - Y)^2$. Now check that X and Z are uncorrelated. They are clearly not independent because $Z = (X - Y)^2 = (X - (2 - X))^2 = (2X - 2)^2$ is a function of X - if I tell you X, you know Z.

- **Fact 5:** The variance of a sum satisfies

$$V(X + Z) = V(X) + V(Z) + 2[E(XZ) - E(X)E(Z)] = V(X) + V(Y) + 2\text{cov}(X, Y).$$

By Fact 3, $V(X + Z) = V(X) + V(Z)$ for independent random variables (but that equation does not imply independence). By induction, if X_1, \ldots, X_n are pairwise independent,

$$V(X_1 + \cdots + X_n) = V(X_1) + \cdots + V(X_n).$$

(Eq. 2)
• Fact 5 (variance of the geometric r.v.): Let W_1 be the wait for the first success in Bernoulli trials with success probability P. Then $V(W_1) = (1 - P)/P^2$. This was proved by first showing

$$
\sum_{n=1}^{\infty} n(n - 1)P(W_1 = n) = \sum_{n=1}^{\infty} n(n - 1)P(1 - P)^{n-1} = \frac{2(1 - P)}{P^2}.
$$

This sum is easily seen to be $E(W_1^2) - E(W_1)$. Since $V(W_1) = E(W_1^2) - [E(W_1)]^2$ we have

$$
V(W_1) = \frac{2(1 - P)}{P^2} + \frac{1}{P} - \frac{1}{P^2},
$$

using $E(W_1) = 1/P$.

• Fact 6 (variance of the negative binomial r.v.): Let W_k be the wait for the kth success in Bernoulli trials with success probability P. Then $V(W_k) = k(1 - P)/P^2$. This implies the identity

$$
\sum_{n=k}^{\infty} (n-k/P)^2 P(W_k = n) = P^k \sum_{n=k}^{\infty} (n-k/P)^2 \binom{n-1}{k-1} (1-P)^{n-k} = \frac{k(1 - P)}{P^2}.
$$

The proof is probabilistic: We use the fact that $W_k = X_1 + \cdots + X_k$, where X_1 is the wait for the first success and X_{i+1} is the wait for the first success after the i-th; each X_i is geometric (so $V(X_i) = (1 - P)/P^2$) and they are independent so by (2), the variance of W_k is $k(1 - P)/P^2$.

• Fact 7 (variance of the binomial r.v.): Let S_n be the number of successes in n Bernoulli trials with success probability P. Then $V(S_n) = nP(1-P)$. This implies the identity

$$
\sum_{k=0}^{n} (k-nP)^2 P(S_n = k) = \sum_{k=0}^{n} (k-nP)^2 \binom{n}{k} P^k(1-P)^{n-k} = nP(1-P)
$$

and is proved using indicators: $S_n = X_1 + \cdots + X_n$ where X_i, the indicator (of success) for the ith trial, has $V(X_i) = P(1-P)$ and by (2), $V(S_n)$ is $nP(1-P)$.

2. Variance of an Average: Let X be a random variable on the sample space (S, P) of an experiment \mathcal{E}. Write $m = E(X)$ for the mean and $\sigma^2 = V(X)$ for the variance of X. \mathcal{E} is performed independently n times and X_i is the value of X on the ith trial (note that $E(X_i) = m$ and $V(X_i) = \sigma^2$). Let

$$
A_n = \frac{X_1 + \cdots + X_n}{n}
$$

denote the average of the n observed values of X. Clearly

$$
E(A_n) = m \text{ and } V(A_n) = \frac{\sigma^2}{n}.
$$

We observe that the variance $V(A_n) \to 0$ as $n \to \infty$, and this suggests that A_n is a random variable that converges (in some sense) to its mean m. This is the content of the important Law of Large Numbers. This observation is formalized by using the next result.
3. **Tchebycheff’s Inequality** Let X be a random variable on (S, P) with mean $E(X) = m$, variance $V(X) = \sigma^2$, and frequency function f_x, and let $\epsilon > 0$ be any constant. Then

$$P(|X - m| \geq \epsilon) \leq \frac{V(X)}{\epsilon^2}. \quad (4)$$

This gives a quantitative sense to the observations that

- small variance implies that values of X far from the mean are unlikely and
- if it is likely that X has values that are far from the mean, then the variance must be large.

The proof uses the fact that $\text{Range}(X)$ is the union of $B = \{a_i : |a_i - m| \geq \epsilon\}$ and $B^c = \{a_i : |a_i - m| < \epsilon\}$. By definition $((a_i - m)/\epsilon)^2 \geq 1$ for $a_i \in B$. Therefore since $f_X(a_i) = P(X = a_i)$,

$$P(|X - m| \geq \epsilon) = P(B) = \sum_{a_i \in B} f_X(a_i) \leq \sum_{a_i \in B} \frac{(a_i - m)^2}{\epsilon^2} f_X(a_i)$$

$$\leq \sum_{a_i \in \text{Range}(X)} \frac{(a_i - m)^2}{\epsilon^2} f_X(a_i) = \frac{V(X)}{\epsilon^2}. \quad (5)$$

4. **(*) Law of Large Numbers** Let $\epsilon > 0$ be given. Apply (4) to $X = A_n$ and use (3) to see

$$\text{Prob}(|A_n - m| \geq \epsilon) \leq \frac{V(A_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2} \quad (5)$$

or, subtracting both sides of (5) from 1,

$$\text{Prob}(|A_n - m| < \epsilon) \geq 1 - \frac{\sigma^2}{n\epsilon^2} \uparrow 1.$$

Thus, the random variable A_n (the average of n observations of X), converges to m (the expected value of X).

An interesting special case is when $X = I_B$ is the indicator of an event $B \subseteq S$ which has probability $P(B)$. Then X has expected value $m = P(B)$ and variance $\sigma^2 = P(B)[1 - P(B)]$. Also writing

$$X_i = \begin{cases}
1 & \text{if } B \text{ occurs on the } i^{th} \text{ trial} \\
0 & \text{otherwise}
\end{cases}$$

for the value of X on the i^{th} trial,

$$A_n = \frac{X_1 + \cdots + X_n}{n} \rightarrow P(B);$$

in fact by (5),

$$\text{Prob}(|A_n - P(B)| \geq \epsilon) \leq \frac{P(B)[1 - P(B)]}{n\epsilon^2}. \quad (*)$$
Thus, the fraction of the n repetitions in which B occurs (the relative frequency of B) converges to the probability of B.

The relation expressed in (*) allows us to test the value we assigned to $P(B)$ by comparing it to the observed relative frequency of B in n trials. For example suppose a die is tossed $n = 600$ times and that the event $B = \{\text{the die is a one}\}$ occurred on 150 of the trials. Assuming the die to be fair, $P(B) = 1/6$. We are told that $A_n = 150/600$, so $\varepsilon = 1/4 - 1/6 = 1/12$ in (*), and the right-hand side of (*) evaluates to $1/30$. Equation (*) says that if $P(B)$ really equals $1/6$, such a large number (150) of occurrences of B in $n = 600$ tosses would only happen with probability less than $1/30$. We may in fact have seen this unlikely event, but it is easier to believe that the die is biased in favor of showing a one (i.e., $P(B) > 1/6$).

In fact we will say more: The inequality (*) is equivalent to

$$\text{Prob}(\lvert A_n - P(B) \rvert < \varepsilon) \geq 1 - \frac{P(B)[1 - P(B)]}{n\varepsilon^2}.$$

The right hand side is interpreted as the confidence that $P(B)$ is closer to the observed value of A_n than $\varepsilon = 1/12$: in our example we are $1 - 1/30 = 29/30 = 96\frac{2}{3}\%$ confident that the die is biased in favor of a 1.

[WE WILL NOT COVER THE REMAINING TOPICS THIS SEMESTER, though you are allowed to read through, if you wish]

5. **Generating Functions** Let a_0, a_1, \ldots (or briefly $\{a_i\}$) denote an infinite sequence of real numbers. Its generating function is defined by

$$A(s) = \sum_{k=0}^{\infty} a_k s^k = a_0 + a_1 s + \cdots + a_k s^k + \cdots$$

(6) For example

$$A(s) = \frac{1}{1 - s/2} = \sum_{k=0}^{\infty} \frac{s^k}{2^k}$$

is the generating function of $\{1, 1/2, 1/4, \ldots\}$, the sequence of powers of $1/2$. Generating functions take a discrete object (a sequence of numbers) and give back a continuous function on which calculus may be used. Application of continuous tools is very important in discrete mathematics. Generating functions are one such example.

- **Fact 1:** $A(0) = a_0$ and $A(1) = \sum_{k=0}^{\infty} a_k$, the first element of the sequence and the sum of the elements, respectively (just make the substitutions in (8)).

- **Fact 2:** $A'(1) = \sum_{k=1}^{\infty} k a_k s^{k-1}|_{s=1} = \sum_{k=1}^{\infty} k a_k$ (differentiate each term of the sum in (6) and substitute).
6. **Convolutions** Let \(A(s) = \sum_{k=0}^{\infty} a_k s^k \) and \(B(s) = \sum_{k=0}^{\infty} b_k s^k \) be the generating functions of the sequences \(\{a_i\} \) and \(\{b_i\} \), respectively. If you multiply \(A(s) \) and \(B(s) \) and collect terms with the same power of \(s \), you get
\[
A(s)B(s) = a_0 b_0 + (a_0 b_1 + a_1 b_0)s + (a_0 b_2 + a_1 b_1 + a_2 b_0)s^2 + \cdots + (a_0 b_k + \cdots + a_k b_0)s^k + \cdots.
\]
Observe that \(A(s)B(s) \) is a generating function \(C(s) = \sum_{k=0}^{\infty} c_k s^k \) of the sequence \(\{c_i\} \) whose elements are defined by
\[
c_k = a_0 b_k + a_1 b_{k-1} + \cdots + a_{k-1} b_1 + a_k b_0.
\] (7)
This procedure of using (7) to create a new sequence \(\{c_i\} \) from two given sequences \(\{a_i\} \) and \(\{b_i\} \) is called convolution. We say \(\{c_i\} \) is the convolution of \(\{a_i\} \) and \(\{b_i\} \) and we write
\[
\{c_i\} = \{a_i\} \ast \{b_i\}.
\]
The generating function \(C(s) \) of the convolution of two sequences is the product \(A(s)B(s) \) of their generating functions.

6. **Counting Binary Trees**: We will discuss two important applications that illustrate the power of generating functions in discrete problems. The first is to count binary trees. Let \(B_n \) denote the set of rooted binary trees with \(n \) nodes, and let \(b_n \) denote \(|B_n| \), the size of \(B_n \). We have seen that \(b_1 = 1, b_2 = 2, b_3 = 5, \) and \(b_4 = 14, \) etc., and agreed to take \(b_0 = 1 \) (for the empty tree). We also derived the fact that
\[
b_n = b_0 b_{n-1} + b_1 b_{n-2} + \cdots + b_{n-2} b_1 + b_{n-1} b_0,
\] (8)
the term \(b_k b_{n-k-1} \) counting binary trees with \(k \) nodes in the left subtree. We will (I) find the generating function \(B(s) = \sum_{i=0}^{\infty} b_i s^i \) of the sequence \(\{b_i\} \) and (II) compute the coefficient of \(s^n \), namely \(b_n \).

(I) Multiply equation (8) above by \(s^n \) and sum (on both sides of =) from \(n = 1 \) to obtain
\[
\sum_{n=1}^{\infty} b_n s^n = \sum_{n=1}^{\infty} (b_0 b_{n-1} + \cdots + b_{n-2} b_1 + b_{n-1} b_0) s^n = s \sum_{n=1}^{\infty} c_{n-1} s^{n-1},
\] (9)
where in the last sum we write
\[
c_{n-1} = b_0 b_{n-1} + \cdots + b_{n-1} b_0.
\]
Observe (see (7)) that \(c_{n-1} \) above is the \((n-1)^{st} \) term of the convolution \(\{b_i\} \ast \{b_i\} \), so that \(C(s) = B(s)B(s) \), and we see from (9) that
\[
B(s) - 1 = sC(s) = s (B(s))^2,
\]
the minus 1, because the left hand sum in (9) is \(B(s) \), except the \(n = 0 \) term is missing, and \(b_0 = 1 \). Rearranging terms we get
\[
s(B(s))^2 - B(s) + 1 = 0
\] (10)
a quadratic equation in \(B(s) \). Solving for \(B(s) \) gives
\[
B(s) = \frac{1 \pm \sqrt{1 - 4s}}{2s},
\]
and we reject the positive root because it makes the right side infinite at \(s = 0 \).

(II) Using Newton’s generalized Binomial theorem we see that
\[
(1 - 4s)^{1/2} = \sum_{j=0}^{\infty} (-4s)^j \binom{1/2}{j} = 1 + \sum_{j=1}^{\infty} (-4s)^j \frac{1/2}{j}
\]
and therefore, that
\[
B(s) = \frac{1 - (1 - 4s)^{1/2}}{2s} = -\frac{\sum_{j=1}^{\infty} (-4s)^j \frac{1/2}{j}}{2s} = -\frac{1}{2} \sum_{j=1}^{\infty} (-4)^j s^{j-1} \binom{1/2}{j}
\]
In this expansion \(s^n \) occurs in the \(j = n + 1 \) term, so that \(b_n \) (the coefficient of \(s^n \)) satisfies
\[
b_n = -\frac{(-4)^{n+1}}{2} \binom{1/2}{n+1} = -\frac{(-4)^{n+1}}{2} \left[\frac{\left(\frac{1}{2} - 1 \right) \left(\frac{1}{2} - 2 \right) \cdots \left(\frac{1}{2} - n \right)}{(n+1)!} \right]
\]
which simplifies to
\[
b_n = \frac{1}{n+1} \left(\frac{2n}{n} \right)
\]
as the number of rooted binary trees with \(n \) nodes.

This was a nontrivial calculation, but not conceptually difficult. You might like to think about determining \(b_n \) without having the useful tool of generating functions.

7. **Generating Functions for Integer Random Variables:** The second important application of generating functions is in Probability. We begin with some basic ideas.

Let \(X \) be a random variable whose range is a subset of \(\{0, 1, \ldots\} \) and write \(p_i = f_X(i) = \text{Prob}(X = i) \) for its probabilities. We use this sequence of probabilities to define \(\phi_X \), the generating function of \(X \):
\[
\phi_X(s) = \sum_{k=0}^{\infty} p_k s^k = \sum_{k=0}^{\infty} \text{Prob}(X = k)s^k
\]
(13)
Note that this sum is an expectation, \(E(s^X) \). By Fact 1, \(\phi(0) = p_0 \) and \(\phi(1) = 1 \).

- **Fact 3: Mean and Variance:** Furthermore by Fact 2, \(\frac{\phi'(s)}{s|_{s=1}} = \sum_{k=1}^{\infty} kp_k = E(X) \). In fact if we differentiate (13) twice and evaluate at \(s = 1 \), we see
\[
\phi''(s)|_{s=1} = \sum_{k=1}^{\infty} k(k-1)p_k = \sum_{k=1}^{\infty} k^2 p_k - \sum_{k=1}^{\infty} kp_k = E(X^2) - E(X).
\]
Adding \(E(X) - [E(X)]^2 \) to both sides of the above equation we have
\[
\phi''(s)|_{s=1} + \phi'(s)|_{s=1} - (\phi'(s)|_{s=1})^2 = V(X).
\]
(14)
Example 1: Let \(X \) be the indicator of success in a B-trial with success probability \(P \). By (13) its generating function is
\[
\phi_X(s) = 1 - P + Ps.
\]
Use Fact 3 to see (again) that \(E(X) = \phi'(1) = P \) and that \(V(X) = P(1 - P) \).

Example 2: Let \(X \) be the score on a toss of a fair die. By (13) its generating function is
\[
\phi_X(s) = \sum_{k=0}^{\infty} \text{Prob}(X = k)s^k = \frac{s + s^2 + s^3 + s^4 + s^5 + s^6}{6}.
\]
Let \(Y \) be the score on a toss of a second fair die and \(Z = X + Y \). Using (13) and the probabilities for \(Z \), \(\phi_Z(s) = \sum_{k=0}^{\infty} \text{Prob}(Z = k)s^k \) satisfies
\[
\phi_Z(s) = \frac{s^2 + 2s^3 + 3s^4 + 4s^5 + 5s^6 + 6s^7 + 5s^8 + 4s^9 + 3s^{10} + 2s^{11} + s^{12}}{36}.
\]

Fact 4: Generating Functions for Independent Sums: Let \(X \) and \(Y \) be random variables with \(\text{Prob}(X = k) = a_k \) and \(\text{Prob}(Y = k) = b_k \) and let \(Z = X + Y \). Then
\[
\{Z = k\} = \bigcup_{i=0}^{k} (\{X = i\} \cap \{Y = k - i\})
\]
and if \(X \) and \(Y \) are independent, \(c_k = \text{Prob}(Z = k) \) satisfies
\[
c_k = \sum_{i=0}^{k} \text{Prob}(\{X = i\} \cap \{Y = k - i\})
\]
\[
= \sum_{i=0}^{k} \text{Prob}(X = i)\text{Prob}(Y = k - i) = \sum_{i=0}^{k} a_i b_{k-i};
\]
From (7), \(\{c_i\} \) is seen to be the convolution \(\{a_i\} * \{b_i\} \), so
\[
\phi_Z(s) = \phi_X(s)\phi_Y(s)
\]
for independent sums. This extends by induction to the sum \(Z = X_1 + \cdots + X_n \) of independent random variables giving
\[
\phi_Z(s) = \phi_{X_1}(s)\phi_{X_2}(s) \cdots \phi_{X_n}(s).
\]
You should check that \(\phi_Z(s) = (\phi_X(s))^2 \) in the previous Example 2 with dice (note \(Z = X + Y \) and \(\phi_X = \phi_Y \)).

These facts combine to give the generating functions for two familiar random variables.
(a) **Negative Binomial Generating Function:** Let W_k be the number of Bernoulli trials needed for k successes, with \mathcal{P} denoting the success probability. First we take $k = 1$, so W_1 is the geometric random variable with \(\text{Prob}(W_1 = n) = \mathcal{P}(1 - \mathcal{P})^{n-1}, \ n = 1, 2, \ldots \). Using this in (13) we see

\[
\phi_{W_1}(s) = \frac{\mathcal{P}s}{1 - (1 - \mathcal{P})s}
\]

It is instructive to verify that \(\phi'_{W_1}(s)|_{s=1} = 1/\mathcal{P} \) and that (14) gives \(V(W_1) = (1 - \mathcal{P})/\mathcal{P}^2 \).

As usual, we write $W_k = X_1 + \cdots + X_k$, X_1 the number of trials needed for the first success and X_{i+1} the number of trials after the i^{th} success that are needed for the next success. Since the X_i are independent geometrics, we use (15) inductively to obtain

\[
\phi_{W_k}(s) = (\phi_{W_1}(s))^k = \left(\frac{\mathcal{P}s}{1 - (1 - \mathcal{P})s} \right)^k
\]

and again, it is instructive to verify that $E(W_k) = k/\mathcal{P}$ and $V(W_k) = k(1 - \mathcal{P})/\mathcal{P}^2$.

(b) **Binomial Generating Function** Let S_n be the number of successes in n Bernoulli trials with success probability \mathcal{P}. Its generating function is

\[
\phi_{S_n}(s) = (1 - \mathcal{P} + \mathcal{P}s)^n.
\]

You can derive this: (A) by applying the binomial theorem to $\phi_{S_n}(s) = \sum_{i=0}^{n} \binom{n}{i} \mathcal{P}^i (1 - \mathcal{P})^{n-i} s^i$, or (B), by noting that $S_n = X_1 + \cdots + X_n$, X_i the indicator of success on the i^{th} trial, and using (14) along with the fact (Example 1) that $\phi_{X_i}(s) = (1 - \mathcal{P} + \mathcal{P}s)$. It is instructive to use (16) to compute the mean and variance of S_n.