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1. Variance: Suppose X is a random variable on a probability space (S, P ) and with ex-
pected value E(X) = m. The variance of X is the expected squared deviation from m,
defined by

V (X) ≡ E([X −m]2). (1)

Evaluating (1) over S, we see

V (X) =
∑

w∈S

[X(w)−m]2P (w)

Evaluating (1) over Range(X) we get

V (X) =
∑

ai∈Range(X)

(ai −m)2P (X = ai) =
∑

ai∈Range(X)

(ai −m)2fX(ai).

• Fact 1: Another (possibly easier) way to evaluate variance is V (X) = E(X2) −m2.
We get this from (1) by E([X−m)]2) = E(X2−2mX+m2) = E(X2)−2mE(X)+m2,
and the fact that m = E(X).

• Fact 2: V (aX + b) = a2V (X). Think of multiplication by a as a “scale change” and
addition by b as “shifting” the measurements implied by X). Then - e.g. - doubling
X multiplies variance by 4; shifting does not effect variance (why?? this should be
intuitive from (1)).

• Given two random variables X and Y defined on the same sample space S, the
covariance of X and Y is defined by

cov(X, Y ) = E(XY )−E(X)E(Y ).

If the covariance of X and Y is zero we say that X and Y are uncorrelated.

• Fact 3: If X and Z are independent they are uncorrelated (so cov(X, Y ) = 0), but
not conversely, as shown by this simple example: Let E be the experiment of tossing
a fair coin twice (equally likely prob.), and taking X = the number of Heads, Y = the
number of Tails, and Z = (X−Y )2. Now check that X and Z are uncorrelated. They
are clearly not independent because Z = (X − Y )2 = (X − (2−X))2 = (2X − 2)2 is
a function of X - if I tell you X , you know Z.

• Fact 4: The variance of a sum satisfies

V (X +Z) = V (X) + V (Z) + 2[E(XZ)−E(X)E(Z)] = V (X) + V (Y ) + 2cov(X, Y ).

By Fact 3, V (X + Z) = V (X) + V (Z) for independent random variables (but that
equation does not imply independence). By induction, if X1, . . . , Xn are pairwise
independent,

V (X1 + · · ·+Xn) = V (X1) + · · ·+ V (Xn). (2)
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• Fact 5 (variance of the geometric r.v.): Let W1 be the wait for the first success in

Bernoulli trials with success probability P. Then V (W1) = (1 − P)/P2. This was
proved by first showing

∞
∑

n=1

n(n− 1)P (W1 = n) =
∞
∑

n=1

n(n− 1)P(1−P)n−1 =
2(1−P)

P2
.

This sum is easily seen to be E(W 2
1 )−E(W1). Since V (W1) = E(W 2

1 )− [E(W1)]
2 we

have

V (W1) =
2(1− P)

P2
+

1

P − 1

P2
,

using E(W1) = 1/P.

• Fact 6 (variance of the negative binomial r.v.): Let Wk be the wait for the k
th success

in Bernoulli trials with success probability P. Then V (Wk) = k(1 − P)/P2. This
implies the indentity

∞
∑

n=k

(n− k/P)2P (Wk = n) = Pk
∞
∑

n=k

(n− k/P)2
(

n− 1

k − 1

)

(1− P)n−k =
k(1−P)

P2
.

The proof is probabilistic: We use the fact that Wk = X1 + · · · + Xk, where X1 is
the wait for the first success and Xi+1 is the wait for the first success after the i-th;
each Xi is geometric (so V (Xi) = (1 − P)/P2) and they are independent so by (2),
the variance of Wk is k(1− P)/P2.

• Fact 7 (variance of the binomial r.v.): Let Sn be the number of successes in n Bernoulli
trials with success probability P. Then V (Sn) = nP(1−P). This implies the identity

n
∑

k=0

(k − nP)2P (Sn = k) =
n
∑

k=0

(k − nP)2
(

n

k

)

Pk(1− P)n−k = nP(1− P)

and is proved using indicators: Sn = X1+· · ·+Xn where Xi, the indicator (of success)
for the ith trial, has V (Xi) = P(1− P) and by (2), V (Sn) is nP(1 −P).

2. Variance of an Average: Let X be a random variable on the sample space (S, P ) of
an experiment E . Write m = E(X) for the mean and σ2 = V (X) for the variance of X .
E is performed independently n times and Xi is the value of X on the ith trial (note that
E(Xi) = m and V (Xi) = σ2). Let

An =
X1 + · · ·+Xn

n

denote the average of the n observed values of X . Clearly

E(An) = m and V (An) =
σ2

n
. (3)

We observe that the variance V (An) → 0 as n → ∞, and this suggests that An is a random
variable that converges (in some sense) to its mean m. This is the content of the important
Law of Large Numbers. This observation is formalized by using the next result.
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3. Tchebycheff’s Inequality Let X be a random variable on (S, P ) with mean E(X) = m,
variance V (X) = σ2, and frequency function fx, and let ε > 0 be any constant. Then

P (|X −m| ≥ ε) ≤ V (X)

ε2
. (4)

This gives a quantitative sense to the observations that

• small variance implies that values of X far from the mean are unlikely and

• if it is likely that X has values that are far from the mean, then the variance must
be large.

The proof uses the fact that Range(X) is the union of B = {ai : |ai − m| ≥ ε} and
Bc = {ai : |ai − m| < ε}. By definition ((ai − m)/ε)2 ≥ 1 for ai ∈ B. Therefore since
fX(ai) = P (X = ai),

P (|X −m| ≥ ε) = P (B) =
∑

ai∈B

fX(ai) ≤
∑

ai∈B

(ai −m)2

ε2
fX(ai)

≤
∑

ai∈Range(X)

(ai −m)2

ε2
fX(ai) =

V (X)

ε2
.

4. (*) Law of Large Numbers Let ε > 0 be given. Apply (4) to X = An and use (3) to
see

Prob(|An −m| ≥ ε) ≤ V (An)

ε2
=

σ2

nε2
(5)

or, subtracting both sides of (5) from 1,

Prob(|An −m| < ε) ≥ 1− σ2

nε2
↑ 1.

Thus, the random variable An (the average of n observations of X), converges to m (the
expected value of X).

An interesting special case is when X = IB is the indicator of an event B ⊆ S which has
probability P (B). Then X has expected value m = P (B) and variance σ2 = P (B)[1 −
P (B)]. Also writing

Xi =

{

1 if B occurs on the ith trial
0 otherwise

for the value of X on the ith trial,

An =
X1 + · · ·+Xn

n
→ P (B);

in fact by (5),

Prob(|An − P (B)| ≥ ε) ≤ P (B)[1− P (B)]

nε2
. (∗)
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Thus, the fraction of the n repetitions in which B occurs (the relative frequency of B)
converges to the probability of B.

The relation expressed in (*) allows us to test the value we assigned to P (B) by comparing
it to the observed relative frequency of B in n trials. For example suppose a die is
tossed n = 600 times and that the event B = {the die is a one} occurred on 150 of the
trials. Assuming the die to be fair, P (B) = 1/6. We are told that An = 150/600, so
ε = 1/4 − 1/6 = 1/12 in (*), and the right-hand side of (*) evaluates to 1/30. Equation
(*) says that if P (B) really equals 1/6, such a large number (150) of occurrences of B in
n = 600 tosses would only happen with probability less than 1/30. We may in fact have
seen this unlikely event, but it is easier to believe that the die is biased in favor of showing
a one (i.e., P (B) > 1/6).

In fact we will say more: The inequality (*) is equivalent to

Prob(|An−P (B)| < ε) ≥ 1−P (B)[1− P (B)]

nε2
. (∗∗)

The right hand side is interpreted as the confidence that P (B) is closer to the observed
value of An than ε = 1/12: in our example we are 1 − 1/30 = 29/30 = 962

3
% confident

that the die is biased in favor of a 1.

==========================================================

[WE WILL N O T COVER THE REMAINING TOPICS THIS SEMESTER, though you
are allowed to read through, if you wish]

5. Generating Functions Let a0, a1, . . . (or briefly {ai}) denote an infinite sequence of real
numbers. Its generating function is defined by

A(s) =
∞
∑

k=0

aks
k = a0 + a1s+ · · ·+ aks

k + · · · (6)

For example

A(s) =
1

1− s/2
=

∞
∑

k=0

sk

2k

is the generating function of {1, 1/2, 1/4, . . .}, the sequence of powers of 1/2. Generating
functions take a discrete object (a sequence of numbers) and give back a continuous func-
tion on which calculus may be used. Application of continuous tools is very important in
discrete mathematics. Generating functions are one such example.

• Fact 1: A(0) = a0 and A(1) =
∑

∞

k=0 ak, the first element of the sequence and the
sum of the elements, respectively (just make the substitutions in (8)).

• Fact 2: A′(1) =
∑

∞

k=1 kaks
k−1|s=1 =

∑

∞

k=1 kak (differentiate each term of the sum

in (6) and substitute).
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• Convolutions Let A(s) =
∑

∞

k=0 aks
k and B(s) =

∑

∞

k=0 bks
k be the generating func-

tions of the sequences {ai} and {bi}, respectively. If you multiply A(s) and B(s) and
collect terms with the same power of s, you get

A(s)B(s) = a0b0+(a0b1+a1b0)s+(a0b2+a1b1+a2b0)s
2+· · ·+(a0bk+· · ·+akb0)s

k+· · · .

Observe that A(s)B(s) is a generating function C(s) =
∑

∞

k=0 cks
k of the sequence

{ci} whose elements are defined by

ck = a0bk + a1bk−1 + · · ·+ ak−1b1 + akb0. (7)

This procedure of using (7) to create a new sequence {ci} from two given sequences
{ai} and {bi} is called convolution. We say {ci} is the convolution of {ai} and {bi}
and we write

{ci} = {ai} ∗ {bi}.
The generating function C(s) of the convolution of two sequences is the product
A(s)B(s) of their generating functions.

6. Counting Binary Trees: We will discuss two important applications that illustrate the
power of generating functions in discrete problems. The first is to count binary trees. Let
Bn denote the set of rooted binary trees with n nodes, and let bn denote |Bn|, the size of
Bn. We have seen that b1 = 1, b2 = 2, b3 = 5, and b4 = 14, etc., and agreed to take b0 = 1
(for the empty tree). We also derived the fact that

bn = b0bn−1 + b1bn−2 + · · ·+ bn−2b1 + bn−1b0, (8)

the term bkbn−k−1 counting binary trees with k nodes in the left subtree. We will (I)
find the generating function B(s) =

∑

∞

i=0 bis
i of the sequence {bi} and (II) compute the

coefficient of sn, namely bn.

(I) Multiply equation (8) above by sn and sum (on both sides of =) from n = 1 to obtain

∞
∑

n=1

bns
n =

∞
∑

n=1

(b0bn−1 + · · ·+ bn−1b0) s
n = s

∞
∑

n=1

cn−1s
n−1, (9)

where in the last sum we write

cn−1 = b0bn−1 + · · ·+ bn−1b0.

Observe (see (7)) that cn−1 above is the (n − 1)st term of the convolution {bi} ∗ {bi}, so
that C(s) = B(s)B(s), and we see from (9) that

B(s)− 1 = sC(s) = s (B(s))2 ,

the minus 1, because the left hand sum in (9) is B(s), except the n = 0 term is missing,
and b0 = 1. Rearranging terms we get

s(B(s))2 − B(s) + 1 = 0 (10)
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a quadratic equation in B(s). Solving for B(s) gives

B(s) =
1±

√
1− 4s

2s
, (11)

and we reject the positive root because it makes the right side infinite at s = 0.

(II) Using Newton’s generalized Binomial theorem we see that

(1− 4s)1/2 =
∞
∑

j=0

(−4s)j
(

1/2

j

)

= 1 +
∞
∑

j=1

(−4s)j
(

1/2

j

)

and therefore, that

B(s) =
1− (1− 4s)1/2

2s
= −

∑

∞

j=1(−4s)j
(

1/2
j

)

2s
= −1

2

∞
∑

j=1

(−4)jsj−1

(

1/2

j

)

In this expansion sn occurs in the j = n+1 term, so that bn (the coefficient of sn) satisfies

bn = −(−4)n+1

2

(

1/2

n + 1

)

= −(−4)n+1

2

[

(1
2
)(1

2
− 1)(1

2
− 2) · · · (1

2
− n)

(n+ 1)!

]

which simplifies to

bn =
1

n+ 1

(

2n

n

)

(12)

as the number of rooted binary trees with n nodes.

This was a nontrivial calculation, but not conceptually difficult. You might like to think
about determining bn without having the useful tool of generating functions.

7. Generating Functions for Integer Random Variables: The second important appli-
cation of generating functions is in Probability. We begin with some basic ideas.

Let X be a random variable whose range is a subset of {0, 1, . . .} and write pi = fX(i) =
Prob(X = i) for its probabilities. We use this sequence of probabilities to define φX , the
generating function of X :

φX(s) =
∞
∑

k=0

pks
k =

∞
∑

k=0

Prob(X = k)sk (13)

Note that this sum is an expectation, E(sX). By Fact 1, φ(0) = p0 and φ(1) = 1.

• Fact 3: Mean and Variance: Furthermore by Fact 2, φ′(s)|s=1 =
∑

∞

k=1 kpk

=E(X) . In fact if we differentiate (13) twice and evaluate at s = 1, we see

φ′′

X(s)|s=1 =
∞
∑

k=1

k(k − 1)pk =
∞
∑

k=1

k2pk −
∞
∑

k=1

kpk = E(X2)−E(X).

Adding E(X)− [E(X)]2 to both sides of the above equation we have

φ′′

X(s)|s=1 + φ′

X(s)|s=1 − (φ′

X(s)|s=1)
2 = V (X). (14)
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– Example 1: Let X be the indicator of success in a B-trial with success proba-
bility P. By (13) its generating function is

φX(s) = 1− P + Ps.

Use Fact 3 to see (again) that E(X) = φ′(1) = P and that V (X) = P(1 −P).

– Example 2: Let X be the score on a toss of a fair die. By (13) its generating
function is

φX(s) =
∞
∑

k=0

Prob(X = k)sk =
s+ s2 + s3 + s4 + s5 + s6

6
.

Let Y be the score on a toss of a second fair die and Z = X +Y . Using (13) and
the probabilities for Z, φZ(s) =

∑

∞

k=0 Prob(Z = k)sk satisfies

φZ(s) =
s2 + 2s3 + 3s4 + 4s5 + 5s6 + 6s7 + 5s8 + 4s9 + 3s10 + 2s11 + s12

36
.

• Fact 4: Generating Functions for Independent Sums: Let X and Y be random
variables with Prob(X = k) = ak and Prob(Y = k) = bk and let Z = X + Y . Then

{Z = k} =
k
⋃

i=0

({X = i} ∩ {Y = k − i})

and if X and Y are independent, ck = Prob(Z = k) satisfies

ck =
k
∑

i=0

Prob ({X = i} ∩ {Y = k − i})

=
k
∑

i=0

Prob(X = i)Prob(Y = k − i) =
k
∑

i=0

aibk−i;

From (7), {ci} is seen to be the convolution {ai} ∗ {bi}, so

φZ(s) = φX(s)φY (s)

for independent sums. This extends by induction to the sum Z = X1 + · · ·+Xn of
independent random variables giving

φZ(s) = φX1
(s)φX2

(s) · · ·φXn
(s). (15)

You should check that φZ(s) = (φX(s))
2 in the previous Example 2 with dice (note

Z = X + Y and φX = φY ).

These facts combine to give the generating functions for two familiar random vari-
ables.

7



(a) Negative Binomial Generating Function: LetWk be the number of Bernoulli
trials needed for k successes, with P denoting the success probability. First we
take k = 1, so W1 is the geometric random variable with Prob(W1 = n) =
P(1− P)n−1, n = 1, 2, . . .. Using this in (13) we see

φW1
(s) =

Ps

1− (1−P)s

It is instructive to verify that φ′

W1
(s)|s=1 = 1/P and that (14) gives V (W1) =

(1−P)/P2.
As usual, we writeWk = X1+· · ·+Xk, X1 the number of trials needed for the first
success and Xi+1 the number of trials after the ith success that are needed for the
next success. Since the Xi are independent geometrics, we use (15) inductively
to obtain

φWk
(s) = (φW1

(S))k =

(

Ps

1− (1− P)s

)k

and again, it is instructive to verify that E(Wk) = k/P and V (Wk) = k(1 −
P)/P2.

(b) Binomial Generating Function Let Sn be the number of successes in n
Bernoulli trials with success probability P. Its generating function is

φSn
(s) = (1−P + Ps)n. (16)

You can derive this: (A) by applying the binomial theorem to φSn
(s) =

∑n
i=0

(

n
i

)

P i(1−
P)n−isi, or (B), by noting that Sn = X1 + · · ·+Xn, Xi the indicator of success
on the ith trial, and using (14) along with the fact (Example 1) that φXi

(s) =
(1−P + Ps). It is instructive to use (16) to compute the mean and variance of
Sn.
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