1. Variance: Suppose X is a random variable on a probability space (S, P) and with expected value $E(X)=m$. The variance of X is the expected squared deviation from m, defined by

$$
\begin{equation*}
V(X) \equiv E\left([X-m]^{2}\right) \tag{1}
\end{equation*}
$$

Evaluating (1) over S, we see

$$
V(X)=\sum_{w \in S}[X(w)-m]^{2} P(w)
$$

Evaluating (1) over Range(X) we get

$$
V(X)=\sum_{a_{i} \in \operatorname{Range}(X)}\left(a_{i}-m\right)^{2} P\left(X=a_{i}\right)=\sum_{a_{i} \in \operatorname{Range}(X)}\left(a_{i}-m\right)^{2} f_{X}\left(a_{i}\right) .
$$

- Fact 1: Another (possibly easier) way to evaluate variance is $V(X)=E\left(X^{2}\right)-m^{2}$. We get this from (1) by $\left.E([X-m)]^{2}\right)=E\left(X^{2}-2 m X+m^{2}\right)=E\left(X^{2}\right)-2 m E(X)+m^{2}$, and the fact that $m=E(X)$.
- Fact 2: $V(a X+b)=a^{2} V(X)$. Think of multiplication by a as a "scale change" and addition by b as "shifting" the measurements implied by X). Then - e.g. - doubling X multiplies variance by 4 ; shifting does not effect variance (why?? this should be intuitive from (1)).
- Given two random variables X and Y defined on the same sample space S, the covariance of X and Y is defined by

$$
\operatorname{cov}(X, Y)=E(X Y)-E(X) E(Y)
$$

If the covariance of X and Y is zero we say that X and Y are uncorrelated.

- Fact 3: If X and Z are independent they are uncorrelated (so $\operatorname{cov}(X, Y)=0$), but not conversely, as shown by this simple example: Let \mathcal{E} be the experiment of tossing a fair coin twice (equally likely prob.), and taking $X=$ the number of Heads, $Y=$ the number of Tails, and $Z=(X-Y)^{2}$. Now check that X and Z are uncorrelated. They are clearly not independent because $Z=(X-Y)^{2}=(X-(2-X))^{2}=(2 X-2)^{2}$ is a function of X - if I tell you X, you know Z.
- Fact 4: The variance of a sum satisfies

$$
V(X+Z)=V(X)+V(Z)+2[E(X Z)-E(X) E(Z)]=V(X)+V(Y)+2 \operatorname{cov}(X, Y)
$$

By Fact 3, $V(X+Z)=V(X)+V(Z)$ for independent random variables (but that equation does not imply independence). By induction, if X_{1}, \ldots, X_{n} are pairwise independent,

$$
\begin{equation*}
V\left(X_{1}+\cdots+X_{n}\right)=V\left(X_{1}\right)+\cdots+V\left(X_{n}\right) . \tag{2}
\end{equation*}
$$

- Fact 5 (variance of the geometric r.v.): Let W_{1} be the wait for the first success in Bernoulli trials with success probability \mathcal{P}. Then $V\left(W_{1}\right)=(1-\mathcal{P}) / \mathcal{P}^{2}$. This was proved by first showing

$$
\sum_{n=1}^{\infty} n(n-1) P\left(W_{1}=n\right)=\sum_{n=1}^{\infty} n(n-1) \mathcal{P}(1-\mathcal{P})^{n-1}=\frac{2(1-\mathcal{P})}{\mathcal{P}^{2}}
$$

This sum is easily seen to be $E\left(W_{1}^{2}\right)-E\left(W_{1}\right)$. Since $V\left(W_{1}\right)=E\left(W_{1}^{2}\right)-\left[E\left(W_{1}\right)\right]^{2}$ we have

$$
V\left(W_{1}\right)=\frac{2(1-\mathcal{P})}{\mathcal{P}^{2}}+\frac{1}{\mathcal{P}}-\frac{1}{\mathcal{P}^{2}},
$$

using $E\left(W_{1}\right)=1 / \mathcal{P}$.

- Fact 6 (variance of the negative binomial r.v.): Let W_{k} be the wait for the $k^{\text {th }}$ success in Bernoulli trials with success probability \mathcal{P}. Then $V\left(W_{k}\right)=k(1-\mathcal{P}) / \mathcal{P}^{2}$. This implies the indentity

$$
\sum_{n=k}^{\infty}(n-k / \mathcal{P})^{2} P\left(W_{k}=n\right)=\mathcal{P}^{k} \sum_{n=k}^{\infty}(n-k / \mathcal{P})^{2}\binom{n-1}{k-1}(1-\mathcal{P})^{n-k}=\frac{k(1-\mathcal{P})}{\mathcal{P}^{2}}
$$

The proof is probabilistic: We use the fact that $W_{k}=X_{1}+\cdots+X_{k}$, where X_{1} is the wait for the first success and X_{i+1} is the wait for the first success after the i-th; each X_{i} is geometric (so $V\left(X_{i}\right)=(1-\mathcal{P}) / \mathcal{P}^{2}$) and they are independent so by (2), the variance of W_{k} is $k(1-\mathcal{P}) / \mathcal{P}^{2}$.

- Fact 7 (variance of the binomial r.v.): Let S_{n} be the number of successes in n Bernoulli trials with success probability \mathcal{P}. Then $V\left(S_{n}\right)=n \mathcal{P}(1-\mathcal{P})$. This implies the identity

$$
\sum_{k=0}^{n}(k-n \mathcal{P})^{2} P\left(S_{n}=k\right)=\sum_{k=0}^{n}(k-n \mathcal{P})^{2}\binom{n}{k} \mathcal{P}^{k}(1-\mathcal{P})^{n-k}=n \mathcal{P}(1-\mathcal{P})
$$

and is proved using indicators: $S_{n}=X_{1}+\cdots+X_{n}$ where X_{i}, the indicator (of success) for the $i^{t h}$ trial, has $V\left(X_{i}\right)=\mathcal{P}(1-\mathcal{P})$ and by (2), $V\left(S_{n}\right)$ is $n \mathcal{P}(1-\mathcal{P})$.
2. Variance of an Average: Let X be a random variable on the sample space (S, P) of an experiment \mathcal{E}. Write $m=E(X)$ for the mean and $\sigma^{2}=V(X)$ for the variance of X. \mathcal{E} is performed independently n times and X_{i} is the value of X on the $i^{\text {th }}$ trial (note that $E\left(X_{i}\right)=m$ and $V\left(X_{i}\right)=\sigma^{2}$. Let

$$
A_{n}=\frac{X_{1}+\cdots+X_{n}}{n}
$$

denote the average of the n observed values of X. Clearly

$$
\begin{equation*}
E\left(A_{n}\right)=m \text { and } V\left(A_{n}\right)=\frac{\sigma^{2}}{n} . \tag{3}
\end{equation*}
$$

We observe that the variance $V\left(A_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, and this suggests that A_{n} is a random variable that converges (in some sense) to its mean m. This is the content of the important Law of Large Numbers. This observation is formalized by using the next result.
3. Tchebycheff's Inequality Let X be a random variable on (S, P) with mean $E(X)=m$, variance $V(X)=\sigma^{2}$, and frequency function f_{x}, and let $\varepsilon>0$ be any constant. Then

$$
\begin{equation*}
P(|X-m| \geq \varepsilon) \leq \frac{V(X)}{\varepsilon^{2}} \tag{4}
\end{equation*}
$$

This gives a quantitative sense to the observations that

- small variance implies that values of X far from the mean are unlikely and
- if it is likely that X has values that are far from the mean, then the variance must be large.

The proof uses the fact that Range (X) is the union of $B=\left\{a_{i}:\left|a_{i}-m\right| \geq \varepsilon\right\}$ and $B^{c}=\left\{a_{i}:\left|a_{i}-m\right|<\varepsilon\right\}$. By definition $\left(\left(a_{i}-m\right) / \varepsilon\right)^{2} \geq 1$ for $a_{i} \in B$. Therefore since $f_{X}\left(a_{i}\right)=P\left(X=a_{i}\right)$,

$$
\begin{aligned}
P(|X-m| & \geq \varepsilon)=P(B)=\sum_{a_{i} \in B} f_{X}\left(a_{i}\right) \leq \sum_{a_{i} \in B} \frac{\left(a_{i}-m\right)^{2}}{\varepsilon^{2}} f_{X}\left(a_{i}\right) \\
& \leq \sum_{a_{i} \in \operatorname{Range}(X)} \frac{\left(a_{i}-m\right)^{2}}{\varepsilon^{2}} f_{X}\left(a_{i}\right)=\frac{V(X)}{\varepsilon^{2}} .
\end{aligned}
$$

4. (*) Law of Large Numbers Let $\varepsilon>0$ be given. Apply (4) to $X=A_{n}$ and use (3) to see

$$
\begin{equation*}
\operatorname{Prob}\left(\left|A_{n}-m\right| \geq \varepsilon\right) \leq \frac{V\left(A_{n}\right)}{\varepsilon^{2}}=\frac{\sigma^{2}}{n \varepsilon^{2}} \tag{5}
\end{equation*}
$$

or, subtracting both sides of (5) from 1,

$$
\operatorname{Prob}\left(\left|A_{n}-m\right|<\varepsilon\right) \geq 1-\frac{\sigma^{2}}{n \varepsilon^{2}} \uparrow 1 .
$$

Thus, the random variable A_{n} (the average of n observations of X), converges to m (the expected value of X).
An interesting special case is when $X=I_{B}$ is the indicator of an event $B \subseteq S$ which has probability $P(B)$. Then X has expected value $m=P(B)$ and variance $\sigma^{2}=P(B)[1-$ $P(B)]$. Also writing

$$
X_{i}= \begin{cases}1 & \text { if } B \text { occurs on the } i^{\text {th }} \text { trial } \\ 0 & \text { otherwise }\end{cases}
$$

for the value of X on the $i^{\text {th }}$ trial,

$$
A_{n}=\frac{X_{1}+\cdots+X_{n}}{n} \rightarrow P(B) ;
$$

in fact by (5),

$$
\begin{equation*}
\operatorname{Prob}\left(\left|A_{n}-P(B)\right| \geq \varepsilon\right) \leq \frac{P(B)[1-P(B)]}{n \varepsilon^{2}} . \tag{*}
\end{equation*}
$$

Thus, the fraction of the n repetitions in which B occurs (the relative frequency of B) converges to the probability of B.

The relation expressed in $\left(^{*}\right)$ allows us to test the value we assigned to $P(B)$ by comparing it to the observed relative frequency of B in n trials. For example suppose a die is tossed $n=600$ times and that the event $B=\{$ the die is a one $\}$ occurred on 150 of the trials. Assuming the die to be fair, $P(B)=1 / 6$. We are told that $A_{n}=150 / 600$, so $\varepsilon=1 / 4-1 / 6=1 / 12$ in $(*)$, and the right-hand side of $\left({ }^{*}\right)$ evaluates to $1 / 30$. Equation $\left(^{*}\right)$ says that if $P(B)$ really equals $1 / 6$, such a large number (150) of occurrences of B in $n=600$ tosses would only happen with probability less than $1 / 30$. We may in fact have seen this unlikely event, but it is easier to believe that the die is biased in favor of showing a one (i.e., $P(B)>1 / 6$).

In fact we will say more: The inequality $\left({ }^{*}\right)$ is equivalent to

$$
\begin{equation*}
\operatorname{Prob}\left(\left|A_{n}-P(B)\right|<\varepsilon\right) \geq 1-\frac{P(B)[1-P(B)]}{n \varepsilon^{2}} \tag{**}
\end{equation*}
$$

The right hand side is interpreted as the confidence that $P(B)$ is closer to the observed value of A_{n} than $\varepsilon=1 / 12$: in our example we are $1-1 / 30=29 / 30=96 \frac{2}{3} \%$ confident that the die is biased in favor of a 1 .
[WE WILL N O T COVER THE REMAINING TOPICS THIS SEMESTER, though you are allowed to read through, if you wish]
5. Generating Functions Let a_{0}, a_{1}, \ldots (or briefly $\left\{a_{i}\right\}$) denote an infinite sequence of real numbers. Its generating function is defined by

$$
\begin{equation*}
A(s)=\sum_{k=0}^{\infty} a_{k} s^{k}=a_{0}+a_{1} s+\cdots+a_{k} s^{k}+\cdots \tag{6}
\end{equation*}
$$

For example

$$
A(s)=\frac{1}{1-s / 2}=\sum_{k=0}^{\infty} \frac{s^{k}}{2^{k}}
$$

is the generating function of $\{1,1 / 2,1 / 4, \ldots\}$, the sequence of powers of $1 / 2$. Generating functions take a discrete object (a sequence of numbers) and give back a continuous function on which calculus may be used. Application of continuous tools is very important in discrete mathematics. Generating functions are one such example.

- Fact 1: $A(0)=a_{0}$ and $A(1)=\sum_{k=0}^{\infty} a_{k}$, the first element of the sequence and the sum of the elements, respectively (just make the substitutions in (8)).
- Fact 2: $A^{\prime}(1)=\left.\sum_{k=1}^{\infty} k a_{k} s^{k-1}\right|_{s=1}=\sum_{k=1}^{\infty} k a_{k}$ (differentiate each term of the sum in (6) and substitute).
- Convolutions Let $A(s)=\sum_{k=0}^{\infty} a_{k} s^{k}$ and $B(s)=\sum_{k=0}^{\infty} b_{k} s^{k}$ be the generating functions of the sequences $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$, respectively. If you multiply $A(s)$ and $B(s)$ and collect terms with the same power of s, you get
$A(s) B(s)=a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) s+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) s^{2}+\cdots+\left(a_{0} b_{k}+\cdots+a_{k} b_{0}\right) s^{k}+\cdots$.
Observe that $A(s) B(s)$ is a generating function $C(s)=\sum_{k=0}^{\infty} c_{k} s^{k}$ of the sequence $\left\{c_{i}\right\}$ whose elements are defined by

$$
\begin{equation*}
c_{k}=a_{0} b_{k}+a_{1} b_{k-1}+\cdots+a_{k-1} b_{1}+a_{k} b_{0} . \tag{7}
\end{equation*}
$$

This procedure of using (7) to create a new sequence $\left\{c_{i}\right\}$ from two given sequences $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ is called convolution. We say $\left\{c_{i}\right\}$ is the convolution of $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ and we write

$$
\left\{c_{i}\right\}=\left\{a_{i}\right\} *\left\{b_{i}\right\} .
$$

The generating function $C(s)$ of the convolution of two sequences is the product $A(s) B(s)$ of their generating functions.
6. Counting Binary Trees: We will discuss two important applications that illustrate the power of generating functions in discrete problems. The first is to count binary trees. Let B_{n} denote the set of rooted binary trees with n nodes, and let b_{n} denote $\left|B_{n}\right|$, the size of B_{n}. We have seen that $b_{1}=1, b_{2}=2, b_{3}=5$, and $b_{4}=14$, etc., and agreed to take $b_{0}=1$ (for the empty tree). We also derived the fact that

$$
\begin{equation*}
b_{n}=b_{0} b_{n-1}+b_{1} b_{n-2}+\cdots+b_{n-2} b_{1}+b_{n-1} b_{0} \tag{8}
\end{equation*}
$$

the term $b_{k} b_{n-k-1}$ counting binary trees with k nodes in the left subtree. We will (I) find the generating function $B(s)=\sum_{i=0}^{\infty} b_{i} s^{i}$ of the sequence $\left\{b_{i}\right\}$ and (II) compute the coefficient of s^{n}, namely b_{n}.
(I) Multiply equation (8) above by s^{n} and sum (on both sides of $=$) from $n=1$ to obtain

$$
\begin{equation*}
\sum_{n=1}^{\infty} b_{n} s^{n}=\sum_{n=1}^{\infty}\left(b_{0} b_{n-1}+\cdots+b_{n-1} b_{0}\right) s^{n}=s \sum_{n=1}^{\infty} c_{n-1} s^{n-1}, \tag{9}
\end{equation*}
$$

where in the last sum we write

$$
c_{n-1}=b_{0} b_{n-1}+\cdots+b_{n-1} b_{0} .
$$

Observe (see (7)) that c_{n-1} above is the $(n-1)^{\text {st }}$ term of the convolution $\left\{b_{i}\right\} *\left\{b_{i}\right\}$, so that $C(s)=B(s) B(s)$, and we see from (9) that

$$
B(s)-1=s C(s)=s(B(s))^{2}
$$

the minus 1 , because the left hand sum in (9) is $B(s)$, except the $n=0$ term is missing, and $b_{0}=1$. Rearranging terms we get

$$
\begin{equation*}
s(B(s))^{2}-B(s)+1=0 \tag{10}
\end{equation*}
$$

a quadratic equation in $B(s)$. Solving for $B(s)$ gives

$$
\begin{equation*}
B(s)=\frac{1 \pm \sqrt{1-4 s}}{2 s} \tag{11}
\end{equation*}
$$

and we reject the positive root because it makes the right side infinite at $s=0$.
(II) Using Newton's generalized Binomial theorem we see that

$$
(1-4 s)^{1 / 2}=\sum_{j=0}^{\infty}(-4 s)^{j}\binom{1 / 2}{j}=1+\sum_{j=1}^{\infty}(-4 s)^{j}\binom{1 / 2}{j}
$$

and therefore, that

$$
B(s)=\frac{1-(1-4 s)^{1 / 2}}{2 s}=-\frac{\sum_{j=1}^{\infty}(-4 s)^{j}\binom{1 / 2}{j}}{2 s}=-\frac{1}{2} \sum_{j=1}^{\infty}(-4)^{j} s^{j-1}\binom{1 / 2}{j}
$$

In this expansion s^{n} occurs in the $j=n+1$ term, so that b_{n} (the coefficient of s^{n}) satisfies

$$
b_{n}=-\frac{(-4)^{n+1}}{2}\binom{1 / 2}{n+1}=-\frac{(-4)^{n+1}}{2}\left[\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) \cdots\left(\frac{1}{2}-n\right)}{(n+1)!}\right]
$$

which simplifies to

$$
\begin{equation*}
b_{n}=\frac{1}{n+1}\binom{2 n}{n} \tag{12}
\end{equation*}
$$

as the number of rooted binary trees with n nodes.
This was a nontrivial calculation, but not conceptually difficult. You might like to think about determining b_{n} without having the useful tool of generating functions.
7. Generating Functions for Integer Random Variables: The second important application of generating functions is in Probability. We begin with some basic ideas.
Let X be a random variable whose range is a subset of $\{0,1, \ldots\}$ and write $p_{i}=f_{X}(i)=$ $\operatorname{Prob}(X=i)$ for its probabilities. We use this sequence of probabilities to define ϕ_{X}, the generating function of X :

$$
\begin{equation*}
\phi_{X}(s)=\sum_{k=0}^{\infty} p_{k} s^{k}=\sum_{k=0}^{\infty} \operatorname{Prob}(X=k) s^{k} \tag{13}
\end{equation*}
$$

Note that this sum is an expectation, $E\left(s^{X}\right)$. By Fact $1, \phi(0)=p_{0}$ and $\phi(1)=1$.

- Fact 3: Mean and Variance: Furthermore by Fact 2, $\left.\phi^{\prime}(s)\right|_{s=1}=\sum_{k=1}^{\infty} k p_{k}$ $=E(X)$. In fact if we differentiate (13) twice and evaluate at $s=1$, we see

$$
\left.\phi_{X}^{\prime \prime}(s)\right|_{s=1}=\sum_{k=1}^{\infty} k(k-1) p_{k}=\sum_{k=1}^{\infty} k^{2} p_{k}-\sum_{k=1}^{\infty} k p_{k}=E\left(X^{2}\right)-E(X) .
$$

Adding $E(X)-[E(X)]^{2}$ to both sides of the above equation we have

$$
\begin{equation*}
\left.\phi_{X}^{\prime \prime}(s)\right|_{s=1}+\left.\phi_{X}^{\prime}(s)\right|_{s=1}-\left(\left.\phi_{X}^{\prime}(s)\right|_{s=1}\right)^{2}=V(X) . \tag{14}
\end{equation*}
$$

- Example 1: Let X be the indicator of success in a B-trial with success probability \mathcal{P}. By (13) its generating function is

$$
\phi_{X}(s)=1-\mathcal{P}+\mathcal{P} s .
$$

Use Fact 3 to see (again) that $E(X)=\phi^{\prime}(1)=\mathcal{P}$ and that $V(X)=\mathcal{P}(1-\mathcal{P})$.

- Example 2: Let X be the score on a toss of a fair die. By (13) its generating function is

$$
\phi_{X}(s)=\sum_{k=0}^{\infty} \operatorname{Prob}(X=k) s^{k}=\frac{s+s^{2}+s^{3}+s^{4}+s^{5}+s^{6}}{6} .
$$

Let Y be the score on a toss of a second fair die and $Z=X+Y$. Using (13) and the probabilities for $Z, \phi_{Z}(s)=\sum_{k=0}^{\infty} \operatorname{Prob}(Z=k) s^{k}$ satisfies

$$
\phi_{Z}(s)=\frac{s^{2}+2 s^{3}+3 s^{4}+4 s^{5}+5 s^{6}+6 s^{7}+5 s^{8}+4 s^{9}+3 s^{10}+2 s^{11}+s^{12}}{36} .
$$

- Fact 4: Generating Functions for Independent Sums: Let X and Y be random variables with $\operatorname{Prob}(X=k)=a_{k}$ and $\operatorname{Prob}(Y=k)=b_{k}$ and let $Z=X+Y$. Then

$$
\{Z=k\}=\bigcup_{i=0}^{k}(\{X=i\} \cap\{Y=k-i\})
$$

and if X and Y are independent, $c_{k}=\operatorname{Prob}(Z=k)$ satisfies

$$
\begin{gathered}
c_{k}=\sum_{i=0}^{k} \operatorname{Prob}(\{X=i\} \cap\{Y=k-i\}) \\
=\sum_{i=0}^{k} \operatorname{Prob}(X=i) \operatorname{Prob}(Y=k-i)=\sum_{i=0}^{k} a_{i} b_{k-i} ;
\end{gathered}
$$

From (7), $\left\{c_{i}\right\}$ is seen to be the convolution $\left\{a_{i}\right\} *\left\{b_{i}\right\}$, so

$$
\phi_{Z}(s)=\phi_{X}(s) \phi_{Y}(s)
$$

for independent sums. This extends by induction to the sum $Z=X_{1}+\cdots+X_{n}$ of independent random variables giving

$$
\begin{equation*}
\phi_{Z}(s)=\phi_{X_{1}}(s) \phi_{X_{2}}(s) \cdots \phi_{X_{n}}(s) . \tag{15}
\end{equation*}
$$

You should check that $\phi_{Z}(s)=\left(\phi_{X}(s)\right)^{2}$ in the previous Example 2 with dice (note $Z=X+Y$ and $\left.\phi_{X}=\phi_{Y}\right)$.
These facts combine to give the generating functions for two familiar random variables.
(a) Negative Binomial Generating Function: Let W_{k} be the number of Bernoulli trials needed for k successes, with \mathcal{P} denoting the success probability. First we take $k=1$, so W_{1} is the geometric random variable with $\operatorname{Prob}\left(W_{1}=n\right)=$ $\mathcal{P}(1-\mathcal{P})^{n-1}, n=1,2, \ldots$ Using this in (13) we see

$$
\phi_{W_{1}}(s)=\frac{\mathcal{P} s}{1-(1-\mathcal{P}) s}
$$

It is instructive to verify that $\left.\phi_{W_{1}}^{\prime}(s)\right|_{s=1}=1 / \mathcal{P}$ and that (14) gives $V\left(W_{1}\right)=$ $(1-\mathcal{P}) / \mathcal{P}^{2}$.
As usual, we write $W_{k}=X_{1}+\cdots+X_{k}, X_{1}$ the number of trials needed for the first success and X_{i+1} the number of trials after the $i^{t h}$ success that are needed for the next success. Since the X_{i} are independent geometrics, we use (15) inductively to obtain

$$
\phi_{W_{k}}(s)=\left(\phi_{W_{1}}(S)\right)^{k}=\left(\frac{\mathcal{P} s}{1-(1-\mathcal{P}) s}\right)^{k}
$$

and again, it is instructive to verify that $E\left(W_{k}\right)=k / \mathcal{P}$ and $V\left(W_{k}\right)=k(1-$ $\mathcal{P}) / \mathcal{P}^{2}$.
(b) Binomial Generating Function Let S_{n} be the number of successes in n Bernoulli trials with success probability \mathcal{P}. Its generating function is

$$
\begin{equation*}
\phi_{S_{n}}(s)=(1-\mathcal{P}+\mathcal{P} s)^{n} . \tag{16}
\end{equation*}
$$

You can derive this: (A) by applying the binomial theorem to $\phi_{S_{n}}(s)=\sum_{i=0}^{n}\binom{n}{i} \mathcal{P}^{i}(1-$ $\mathcal{P})^{n-i} s^{i}$, or (B), by noting that $S_{n}=X_{1}+\cdots+X_{n}, X_{i}$ the indicator of success on the $i^{\text {th }}$ trial, and using (14) along with the fact (Example 1) that $\phi_{X_{i}}(s)=$ $(1-\mathcal{P}+\mathcal{P} s)$. It is instructive to use (16) to compute the mean and variance of S_{n}.

