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After our intense focus on counting, we continue with the study of some more of the basic notions
from Probability (though counting will remain in our thoughts). An important concept is that of
the

Random Variable: Consider a random experiment E that has probability space (S, P ). A random
variable X is a function from the sample space S to the reals. For example in the experiment of
tossing a fair coin three times, let X be the profit if you receive a dollar for each Head and pay a
dollar for each Tail.

w ∈ S HHH HHT HTH HTT THH THT TTH TTT
X(w) 3 1 1 −1 1 −1 −1 −3

The outcomes of E (symbols) are in the top row; the values of the random variable X (real numbers)
are in the bottom. Define

Range(X) = {all possible values of X} = {distinct X(w) : w ∈ S};

notice that it is a set, not a multi-set. In the example above , Range(X) = {3, 1,−1,−3} =
{a1, . . . , a4}.

• Fact 1: |Range(X)| ≤ |S|: the equality can occur only if X takes a distinct value for each
w ∈ S; otherwise there are outcomes w1 6= w2 in S for which X(w1) = X(w2). In the example
above |S| = 8, twice the size of Range(X).

• Fact 2: Suppose Range(X) = {a1, . . . , ak}. The events Ai = {w ∈ S : X(w) = ai}, i =
1, . . . , k, partition S. They form what is called the partition induced by X , and we write

AX = {A1, . . . , Ak.

For each ai ∈ Range(X) we define

fX(ai) = P (Ai) = P ({w ∈ S : X(w) = ai}).

Also, if t ∈ R is NOT an element of Range(X), we define fX(t) = 0. The function fX is called
the frequency function of X (some books call it the probability mass function).

• Fact 3: Because AX partitions S,

∑

ai∈Range(X)

fX(ai) = 1.

Therefore fX is a probability measure on Range(X) and we now understand that the random
variable X has mapped the original probability space (S, P ) into a new one (Range(X), fX).

Independence: Random variables X and Z are independent iff their partitions AX and AZ are.
For this we need P (A ∩ B) = P (A)P (B) for each A ∈ AX and each B ∈ AZ (so no hint about
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a value of X alters your assessment of probabilities for values of Z. Pairwise, k-wise, and mutual
independence for a sequence X1, . . . , Xn of random variables is defined via the events in their
partitions.

Independent Trials: We have an experiment E with sample space T = {t1, . . . , tk} and we use
probability P on T . E is performed n times in succession, each under identical conditions. We will
refer to this sequence of repetitions of the experiment as a composite experiment E (n) = E1, . . . , En,
where Ei denotes the ith performance. The composite sample space for the n repetitions

S(n) = {w = (w1, . . . , wn)|wi ∈ T is the outcome of Ei} = T × · · · × T
︸ ︷︷ ︸

n times

.

• Fact 1: |S(n)| = |T |n = kn.

Product Probability: The points of S(n) can be assigned probabilities in infinitely many ways.
We would like to do it in such a way that both

1. The original probability P is respected: For every trial Ei and every tj ∈ T , the probability
that tj occurs on the ith repetition should be P (tj); in other words, we want

Prob{w = (w1, . . . , wn) ∈ S(n) : wi = tj} = P (tj), (1)

and

2. the repetitions are independent.

The product probability measure P (n) on S(n) is defined by

P (n)(w) = P (w1)P (w2) . . . P (wn), for all w = (w1, . . . , wn) ∈ S(n). (2)

It is not hard to show that

• Fact 2: P (n) really is a probability on S(n); i.e.,
∑

P (n)(w) = 1, the sum over all outcomes in
S(n). Also

• Fact 3: Product probability respects P on T ; i.e., (1) holds for Prob = P (n). Finally,

• Fact 4: P (n) “captures” the independence of the trials in a very strong way. If A1, . . . , An are
events and Ai depends only on the outcome of the ith repetition (i.e., w = (w1, . . . , wn) ∈ Ai

depends on wi and not the other coordinates), then the Ai are mutually independent. Also
random variables X1, . . . , Xn are mutually independent as long as the value of Xi(w) depends
only on the wi. In fact it can be shown that

• Fact 5: If a probability on S(n) satisfies (1) and if events A1, . . . , An are mutually independent
as long as the occurrence of Ai depends only on the outcome of the ith trial, then it is product
probability P (n), defined in (2).
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Bernoulli Trials: E has two outcomes, success (s) and failure (f). P = P (s) = 1 − P (f). E (n)

- the repetition of E n times - is called n Bernoulli trials with success probability P. For each trial
i = 1, . . . , n define

Xi =

{

1 if trial i is success
0 if trial i is failure

the indicator (of success) for the ith trial, and

Sn = X1 + · · ·+Xn

measures the number of successes that occur in the n trials.

• Fact 1: Range(Sn) = {0, 1, . . . , n}. The equation

fSn
(k) = Prob(Sn = k) =

(

n

k

)

Pk(1− P)n−k (3)

defines the binomial frequency function, k = 0, 1, . . . , n. [The product probability of a par-

ticular sequence of n trials that results in k successes is Pk(1 − P)n−k. There are
(
n

k

)

such

sequences, one for each distinct way to choose which k trials result in success].

• Fact 2: It increases up to nP and decreases thereafter.

Infinite Sequences of Bernoulli Trials: Let E be a Bernoulli trial experiment with success
probability P.

1. (k = 1) Let E ′ be the experiment “repeat E until a succuss occurs”. The composite sample
space is S ′ = {s, fs, ffs, . . .}. |S ′| = ∞. The interesting random variable is W1, the number
of repetitions; i.e., the waiting time for the first success.

• Fact 1: Range(W1) = {1, 2, . . .}. The equation

fW1
(n) = Prob(W1 = n) = (1−P)n−1P (4)

defines the geometric frequency function, n = 1, 2, . . ..

2. (general case) Now let E ′ be the experiment “repeat E until the kth succuss occurs”, k ≥ 1.
The composite sample space is S ′ = {s · · · s

︸ ︷︷ ︸

k

, fs · · · s
︸ ︷︷ ︸

k+1

, sfs · · · s
︸ ︷︷ ︸

k+1

, . . . , s · · · sfs
︸ ︷︷ ︸

k+1

, . . .}. |S ′| = ∞.

The interesting random variable is Wk, the number of repetitions; i.e., the waiting time for
the kth success.

• Fact 2: Range(Wk) = {k, k + 1, . . .}. The equation

fWk
(n) = Prob(Wk = n) =

(

n− 1

k − 1

)

(1− P)n−kPk (5)

defines the negative binomial frequency function, n = k, k + 1, . . ..
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Expectation: The notion of random variable provides a basic and useful way to study aspects of
a random experiment that are of particular interest. One of the most useful properties of a random
variable is the expectation. Let X be a random variable defined on a probability space (S, P ). Its
expectation (expected value, mean) is defined by

E(X) =
∑

w∈S

X(w)P (w). (6)

This is a probability-weighted-average of values of X . Suppose Range(X) = {a1, . . . , ak}, and that
AX = {A1, . . . , Ak} is the partition induced by X . Breaking the sum in (6) into sums over the
events Ai ∈ AX , we get

• Fact 1:
E(X) =

∑

w∈A1

X(w)P (w) + · · ·+
∑

w∈Ak

X(w)P (w)

= a1P (X = a1) + · · ·+ akP (X = ak)

=
∑

ai∈Range(X)

aifX(ai)

• Fact 2: Expectation is linear; that is, E(aX + bY + c) = aE(X) + bE(Y ) + c for any random
variables X and Y and reals a, b, c . It is interesting to take a = b = 0 and also to take
a = b = 1, c = 0. This latter extends by induction to show

E(X1 + · · ·+Xn) = E(X1) + · · ·+ E(Xn). (7)

• Fact 3 (mean of the geometric): Let W1 be the wait for the first success in Bernoulli trials

with success probability P. Then E(W1) = 1/P . (You expect to wait twice as long for an

event that is half as likely). This was proved by showing
∞∑

n=1

nP (W1 = n) =
∞∑

n=1

nP(1− P)n−1 =
1

P
.

• Fact 4 (mean of the negative binomial): Let Wk be the wait for the kth success in Bernoulli

trials with success probability P. Then E(Wk) = k/P . This implies the indentity

∞∑

n=k

nP (Wk = n) = Pk
∞∑

n=k

n

(

n− 1

k − 1

)

(1−P)n−k =
k

P

and is proved probabilistically by noting that Wk = X1 + · · ·+Xk, where X1 is the wait for
the first success and Xi+1 is the wait for the first success after the i-th; use (7) and note that
each Xi is geometric.

• Fact 5 (mean of the binomial): Let Sn be the number of successes in n Bernoulli trials with

success probability P. Then E(Sn) = nP . This implies the identity

n∑

k=0

kP (Sn = k) =
n∑

k=0

k

(

n

k

)

Pk(1− P)n−k = nP

and is proved using indicators: Sn = X1 + · · ·+ Xn where Xi, the indicator (of success) for
the ith trial, has E(Xi) = P. Now use (7).

4



Coupon Collecting: There are n coupon types, each type equally likely. You collect coupons
(i.e., sample from the n coupons with replacement) until you have seen r of the types (so its likely
you have sampled much more than r times). The expected wait needed to collect r different coupon
types is

1 +
n

n− 1
+ · · ·+

n

n− r + 1
= n

[
1

n
+ · · ·+

1

n− r + 1

]

;

(after you have seen j types you are waiting for an event (a new type) which has probability
P = (n − j)/n). An interesting case is r = n. The expected wait to collect the whole set of n
coupons is about n log n (natural log), using the fact that 1 + 1/2 + · · ·+ 1/n → loge n.

The Method of Indicators: We already applied this method to establish the mean of the binomial
random variable in Fact 5. Here is another example: Let E be the experiment of placing r balls
randomly into n boxes, and let N count the number of empty boxes. The computation of E(N)
using

E(N) =
∑

ai∈Range(N)

aifN (ai)

could be difficult since you need to compute the entire frequency function fN . However let Xi be
the indicator of the event that box i is empty. E(Xi) = 1 · P (box i is empty) = (1− 1/n)r (why?).
Now notice that

N = X1 + · · ·Xn

so E(N) = E(X1)+· · ·E(Xn) by linearity of expectation, and we easily obtain E(N) = n(1−1/n)r.
For another example, in class we applied the same method to show that the expected number

of people who get their own hats in the n hat experiment is 1 independent of n (!!!): If Xi is the
indicator of the event that person i gets her own hat (so E(Xi) = 1/n) and N is the total number
who get their own hats, then N = X1 + · · ·+Xn and E(N) = E(X1) + · · ·+ E(Xn) = 1.
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