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COUNTING AND COMBINATORICS: One basic, intuitive idea underlies most of what we will do
with counting. We phrase it in the context of random experiments.

Suppose experiment E1 is “choose an element from S1 = {a1, . . . , am}” and experiment E2 is “choose
an element from S2 = {b1, . . . , bn}”. Clearly the sample spaces are S1 (of size = m) and S2 (of size = n),
respectively. We take as an axiom the following cartesian product principle: the composite experiment “do
E1 and then do E2” has sample space S = S1 × S2 = {(x1, x2) : where x1 ∈ S1 is the outcome of the first
experiment E1, and x2 ∈ S2 is the outcome of the second, E2}. S is the cartesian product of S1 and S2 and
its size is |S| = mn = |S1||S2|. We call S the “composite sample space”.

By induction this implies that if

• (1) experiment E1 has sample space S1 (|S1| = n1 ),

• (2) experiment E2 has sample space S2 (|S2| = n2),

• etc.

• (k) experiment Ek has sample space Sk (|Sk| = nk)

then the composite experiment “do E1, then do E2, . . ., and finally, do Ek” has sample space S = S1×S2×
· · · × Sk, the k−fold cartesian product whose size is n1n2 · · ·nk. We apply this idea throughout, and in
particular in the following broad models for random experiments.

1. Ordered Sampling: We study two distinct ways to perform ordered sampling from a given set.

(a) with replacement. Here, we are given a set T = {t1, . . . , tn} of size n. The experiment E is to
sample r times from T , each time writing down which item of T we chose, and then replacing
that item before making the next pick.

The sample space is S = {(x1, . . . , xr) where xi ∈ T denotes what you sampled on the ith pick,
i = 1, . . . , r}. |S| = nr. (In class we observed that this experiment can also be viewed as a
model for placing r balls in n boxes - for ball i we choose a box, xi ∈ {1, . . . , n}).

(b) without replacement (permutations). We have a set T = {t1, . . . , tn}. We sample r times from
T , but we do not replace the item chosen on any of the steps. This forces r ≤ n. The sample
space is S = {(s1, . . . , sr) : si ∈ T is what you chose on the ith sample, i = 1, . . . , r}. Clearly
si 6= sj when i 6= j because the r samples must be distinct items from T . It follows that
|S| = n(n− 1) · · · (n− r+1), a product with r terms. We write (n)r as a shorthand for |S| and
note that

(n)r = n(n− 1) · · · (n− r + 1). (1)

When r = n or n − 1, (n)r is written n!, a notation that is called “n factorial”. Clearly
(n)r = n!/(n− r)!, and it is easy to verify the relations

e

(

n

e

)n

≤ n! ≤ nn.

2. Unordered Sampling (combinations): The experiment is “choose a group of r ≤ n elements
from a set T = {t1, . . . , tn}”. The sample space S consists of all the subsets of T of size r. We write
its size using the notation

(n
r

)

and say “n choose r”, or “binomial coefficient of n things taken r at a
time”.

• Fact 1:

|S| =
(

n

r

)

=
(n)r
r!

=
n!

r!(n− r)!
).
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• Fact 2:
(

n

r

)

=

(

n

n− r

)

.

• Fact 3 (Pascal): If n > r ≥ 1,

(

n

r

)

=

(

n− 1

r − 1

)

+

(

n− 1

r

)

• Fact 5 (Binomial Theorem): Let a and b be reals and n a positive integer. Then

n
∑

j=0

(

n

j

)

ajbn−j = (a+ b)n.

(Proof by induction; base case n = 1 is easy.)

If we take a = b = 1 we get

• Fact 4:
∑n

j=0

(n
j

)

= 2n (number of subsets of an n element set). Other interesting cases are when
1 = a = −b and when a = 1, b = x.

A variety of examples were given in order to illustrate the calculation of event probabilities in sam-
ple spaces with equally likely probability measure. Ordered and unordered sampling featured in
important ways.

3. Stirlings Formula for n!: The Stirling approximation to the value of n! is the function

sn =
√
2πn

(

n

e

)n

.

It is a good approximation to n! in that the ratio n!/sn → 1 as n → ∞. In fact

e
1

12n+1 ≤ n!

sn
≤ e

1

12n .

4. Generalized Binomial Coefficients: Let x be a given real number and r > 0 an integer. Analogous
to (1) we define

(x)r = x(x− 1) · · · (x− r + 1),

a product with r terms; we will agree that (x)0 = 1. Then, analogous to the equation in Fact 1, we
define the binomial coefficient.

(

x

r

)

=
(x)r
r!

.

5. Inclusion/Exclusion Principle: We have n events, A1, . . . , An in a probability space (S,P ). Their
union has probability

P (
n
⋃

i=1

Ai) = S1 − S2 + · · · + (−1)k+1Sk + · · ·+ (−1)n+1Sn,

where S1 =
∑n

i=1 P (Ai), the sum over the n distinct single events, Ai, S2 =
∑

P (Ai ∩Aj), the sum
over the

(n
2

)

distinct pairs, i, j of events, and in general,

Sk =
∑

1≤i1<i2<···<ik≤n

P (Ai1 ∩Ai2 ∩ · · · ∩Aik),

the sum over the
(n
k

)

distinct k-tuples, i1, . . . , ik of events. Events which are good candidates to
attack by inclusion/exclusion involve unions, and are described using the terms
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• “none” =
⋂

(Ac
i ) = (

⋃

Ai)
c

• “at least 1” = “not none”=
⋃

Ai = (
⋂

(Ac
i ))

c

• “all”=
⋂

(Ai) = (
⋃

(Ac
i ))

c

• “not all” = (
⋂

Ai)
c =

⋃

(Ac
i )

Example 1: A computer has 4 output devices. There are 6 jobs currently in the system. The
experiment E is “each job requests an output device”. The sample space for E (6 balls in 4 boxes)

S = {(d1, . . . , d6)|di ∈ {1, 2, 3, 4} denotes the device requested by job i},

and |S| = 46. We compute the probability of A = {ALL deviced are requested}. Let Ai =
{device i is NOT requested} and note that Ac = A1 ∪A2 ∪A3 ∪A4, so by (1),

P (A) = 1− P (A1 ∪A2 ∪A3 ∪A4) = 1− [S1 − S2 + S3 − S4].

Now note that P (Ai) = 36/46 for each i = 1, . . . , 4, that P (Ai ∩ Aj) = 26/46 for each of the 6 i, j
pairs, that P (Ai ∩ Aj ∩ Ak) = 1/46 for each of the 4 distinct triples and that S4 = 0. Therefore
P (A) = 1− [4(36/46) − 6(26/46) + 4(1/46)] = 1560/4096. This can be computed directly (we did it
in class - it took some insight) but inclusion/exclusion makes it automatic.

Example 2 (derangements): Consider the sample space for the hat-check experiment with n hats
(an ordered sample of size n from a set of size n - WITHOUT replacement, so S = {(h1, . . . , hn)|hi ∈
{1, . . . , n} the hat given to person i;hi 6= hj , i 6= j}. S has |S| = n! outcomes, one for each
permutation of 1, . . . , n. The derangement event, A, is the set of outcomes where NOBODY gets
their own hat. Let Ai be the event that person i gets their own hat and note that Ac = A1 ∪ · · · ∪An

so,

P (A) = 1− P (Ac) = 1− P (A1 ∪ · · · ∪An)

= 1− [S1 − S2 + · · ·+ (−1)n+1Sn].

We compute Sk. For each i1 < · · · < ik, P (Ai1 ∩Ai2 ∩ · · · ∩Aik) = (n− k)!/n! because after person i1
gets his hat, i2 gets his, . . . ik gets his, the other n− k hats are distributed to the other n− k people
in (n− k)! different ways. Since there are

(n
k

)

such k-tuples, each with probability (n− k)!/n!,

Sk =

(

n

k

)

(n− k)!

n!
=

1

k!
.

This gives

P (A) = 1− 1 +
1

2!
+ · · ·+ (−1)n

1

n!
≡ qn. (2)

This is the nth partial sum of the Taylor series for 1/e = .3678794412... to which qn converges rapidly
(e.g., q5 = .3666666..., q6 = .368055555..., q7 = .3678571429...). The surprising fact is that once
n > 7, the derangement probability is essentially constant (= 1/e).

Let Bk be the event that exactly k people get their own hats. B0 is the derangement and it is obvious
that P (Bn) = (n!)−1, Since Bk is derangement for the n− k people who do not get their own hats,
it is easy to show that

P (Bk) =
qn−k

k!
;

note that P (Bn−1) = 0.
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6. Partitions: The partitioning experiment E takes a set T = {t1, . . . , tn} and partitions it into k
subsets T1, . . . , Tk, |Ti| = ni > 0, n1 + · · · + nk = n. The subsets come in a fixed order (i.e., the
first, second, etc.) but their elements are unordered. The sample space S is the collection of distinct
partitions and its size, N = |S| satisfies

N =

(

n

n1

)(

n− n1

n2

)

· · ·
(

n− (n1 + · · · nk−1)

nk

)

=
n!

(n1!)(n2!) . . . (nk!)
,

the multinomial coefficient. We can also interpret N as the number of distinguishable permutations
of n items where n1 are of one kind and are indistinguishable from each other, n2 are of a second kind
and are indistinguishable from each other, etc. This is because we will form the permutation by first
placing the n1 indistinguishable items from T1 in any of the n free locations (so

( n
n1

)

possiblities),
then placing the n2 indistinguishable items from T2 in any of the n−n1 remaining, free locations (so
(n−n1

n2

)

possibilities), etc.
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