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COUNTING AND COMBINATORICS: One basic, intuitive idea underlies most of what we will do
with counting. We phrase it in the context of random experiments.

Suppose experiment & is “choose an element from S; = {ay,...,a,}" and experiment & is “choose
an element from So = {b1,...,b,}". Clearly the sample spaces are S; (of size = m) and Sy (of size = n),
respectively. We take as an axiom the following cartesian product principle: the composite experiment “do
&1 and then do &” has sample space S = S1 x Sy = {(z1,22) : where z1 € S; is the outcome of the first
experiment &1, and xo € Sy is the outcome of the second, £ }. S is the cartesian product of S; and Sy and
its size is |S| = mn = [S1]|S2|. We call S the “composite sample space”.

By induction this implies that if

e (1) experiment & has sample space S; (|S1| =n1 ),
e (2) experiment & has sample space Sy (|S2| = na),
e ctc.

e (k) experiment & has sample space Sk (|Sk| = nk)

then the composite experiment “do £, then do &, ..., and finally, do £&” has sample space S = 57 x Sy x
- X Si, the k—fold cartesian product whose size is ning---ng. We apply this idea throughout, and in
particular in the following broad models for random experiments.

1. Ordered Sampling: We study two distinct ways to perform ordered sampling from a given set.

(a) with replacement. Here, we are given a set T = {t1,...,t,} of size n. The experiment £ is to
sample r times from 7', each time writing down which item of T" we chose, and then replacing
that item before making the next pick.

The sample space is S = {(x1,...,z,) where z; € T denotes what you sampled on the i** pick,
i=1,...,r}. |S] = n". (In class we observed that this experiment can also be viewed as a
model for placing r balls in n boxes - for ball i we choose a box, z; € {1,...,n}).

(b) without replacement (permutations). We have a set T' = {t1,...,t,}. We sample 7 times from
T, but we do not replace the item chosen on any of the steps. This forces r < n. The sample
space is S = {(s1,...,8,) : 8; € T is what you chose on the i sample, i = 1,...,r}. Clearly
s;i # s; when i # j because the r samples must be distinct items from 7. It follows that
|S|=n(n—1)---(n—r+1), a product with r terms. We write (n), as a shorthand for |S| and
note that

n)y=nn—1)---(n—r+1). (1)

When r = n or n — 1, (n), is written n!, a notation that is called “n factorial”. Clearly
(n), =n!/(n—r)!, and it is easy to verify the relations

n n
e (—) <n!<n"
e

2. Unordered Sampling (combinations): The experiment is “choose a group of r < n elements
from a set T'= {t1,...,t,}”. The sample space S consists of all the subsets of T" of size r. We write
its size using the notation (:f) and say “n choose r”, or “binomial coefficient of n things taken r at a
time”.

e Fact 1:




e Fact 2:

e Fact 3 (Pascal): If n > r > 1,

()=C2) ()

e Fact 5 (Binomial Theorem): Let a and b be reals and n a positive integer. Then

i (n) a?b" = (a +b)™.
=0 \J

(Proof by induction; base case n =1 is easy.)

If we take a = b =1 we get

e Fact 4: 377, (?) = 2" (number of subsets of an n element set). Other interesting cases are when
l=a=-band whena=1,b=x.

A variety of examples were given in order to illustrate the calculation of event probabilities in sam-
ple spaces with equally likely probability measure. Ordered and unordered sampling featured in
important ways.

. Stirlings Formula for n!: The Stirling approximation to the value of n! is the function

e ()

n

It is a good approximation to n! in that the ratio n!/s, — 1 as n — oo. In fact

n! 1

e#«kl < < el2n,

=55
. Generalized Binomial Coefficients: Let x be a given real number and » > 0 an integer. Analogous
to (1) we define

(@) =2(@x—=1)--(z —r+1),

a product with r terms; we will agree that (z)o = 1. Then, analogous to the equation in Fact 1, we
define the binomial coefficient.

. Inclusion/Exclusion Principle: We have n events, A1, ..., A, in a probability space (S, P). Their
union has probability

n
P(U Az) =5 -5+ -+ (—1)k+15k + -+ (—1)n+1Sn,
i=1
where S1 = YL, P(A;), the sum over the n distinct single events, 4;, So =3 P(A; N A;j), the sum
over the (3) distinct pairs, 7,7 of events, and in general,

Sp = > P(A;, NA, NN A,

1<i1 << <1 <n

the sum over the (Z) distinct k-tuples, i1, ...,7; of events. Events which are good candidates to
attack by inclusion/exclusion involve unions, and are described using the terms




e “none” = (Af) = (UA)°

e “at least 17 = “not none”= [J A4; = (N(A$))°
o “all’=N(A;) = (U(A9))°

e “not all” = (N 4;)° = U(AS)

Example 1: A computer has 4 output devices. There are 6 jobs currently in the system. The
experiment £ is “each job requests an output device”. The sample space for £ (6 balls in 4 boxes)

S ={(dy,...,ds)|d; € {1,2,3,4} denotes the device requested by job i},

and |S| = 45. We compute the probability of A = {ALL deviced are requested}. Let A; =
{device i is NOT requested} and note that A° = A; U As U A3 U Ay, so by (1),

P(A) =1-P(AjUAyUA3UAy) =1—[S) — Sy + 53— Sy

Now note that P(A;) = 3°/4° for each i = 1,...,4, that P(A; N A;) = 26/4° for each of the 6 i, j
pairs, that P(A4; N A; N Ag) = 1/45 for each of the 4 distinct triples and that Sy = 0. Therefore
P(A) =1 —[4(3%/45) — 6(26/45) + 4(1/4°)] = 1560/4096. This can be computed directly (we did it
in class - it took some insight) but inclusion/exclusion makes it automatic.

Example 2 (derangements): Consider the sample space for the hat-check experiment with n hats
(an ordered sample of size n from a set of size n - WITHOUT replacement, so S = {(h1,...,hy)|h; €
{1,...,n} the hat given to person i;h; # hj,i # j}. S has |S| = n! outcomes, one for each
permutation of 1,...,n. The derangement event, A, is the set of outcomes where NOBODY gets
their own hat. Let A; be the event that person i gets their own hat and note that A = A;U---UA,
S0,

P(A)=1-P(A% =1—P(A4 U---UA,)

=1- [51 —S9+--- 4+ (_1)n+15n].

We compute Sy. For each iy < --- < iy, P(4;, NA;,N---NA;, ) = (n—k)!/n! because after person i;
gets his hat, io gets his, ... i; gets his, the other n — k hats are distributed to the other n — k people
in (n — k)! different ways. Since there are () such k-tuples, each with probability (n — k)!/n!,

_(n\(n—=FK)! 1
Sk_(k) n kU

P(A):1—1+%+---+(—1)”mzqn. )

This gives

This is the n'* partial sum of the Taylor series for 1/e = .3678794412... to which ¢, converges rapidly
(e.g., g5 = .3666666..., gg = .368055555..., g7 = .3678571429...). The surprising fact is that once
n > 7, the derangement probability is essentially constant (= 1/e).

Let By be the event that exactly k people get their own hats. By is the derangement and it is obvious
that P(B,) = (n!)~!, Since B}, is derangement for the n — k people who do not get their own hats,
it is easy to show that

An—k
P(By) = 1

note that P(B,_1) = 0.



6. Partitions: The partitioning experiment £ takes a set T' = {t1,...,t,} and partitions it into k
subsets T1,...,Tk, |T;| = n; > 0, n1 + -+ + nx = n. The subsets come in a fixed order (i.e., the
first, second, etc.) but their elements are unordered. The sample space S is the collection of distinct
partitions and its size, N = |S| satisfies

_(n)(n—n1) n—(ny+---ng_1) _ n!
N_<n1>< ng ) ( ny ) (n1)(n2!) ... (ng!)’

the multinomial coefficient. We can also interpret IV as the number of distinguishable permutations
of n items where nq are of one kind and are indistinguishable from each other, ns are of a second kind
and are indistinguishable from each other, etc. This is because we will form the permutation by first
placing the n; indistinguishable items from T in any of the n free locations (so (TZ) possiblities),

then placing the ngy indistinguishable items from 7% in any of the n —n; remaining, free locations (so
(n—nl
n2

) possibilities), etc.



