CS206 Review Sheet 1 September 8, 2018

1. Set Theory Review We recall some concepts (and notations) from elementary set theory
that will be used throughout the course.

(a) x € A means “z is an element of the set A”; © ¢ A means z is not an element of A.
(b) relations between sets: The notation

i. A C B means that if x € A then also z € B (we say ”A is a subset of B”).
ii. AD B means B C A (“A is a superset of B”).
iii. AC Bmeansz € A=z € Band Jy € B:y ¢ A (proper subset).
iv. A D B means B C A (proper superset)..
v. A= B means AC B and B C A.
(c) operations on sets: (From now on we assume A and B are both subsets of a given set S
(the “universe”); i.e., A, B C 5)
i. A={reS:x¢A} (complement). [= means “equal, by definition”].
ii. ¢ =S¢ (the empty set).
iii. ANB={xe€S:2e€ Aandz e B} (intersection).
iv. AUB={zreS:xe€ Aorz e B (or both)} (union).
v. A\B={zxe€S:x€ Aand z & B}, (= AN B¢, the complement of B in A).
(d) set identities
i. AU(BNC)=(AuB)N(AuUC(C)
i. AN(BUC)=(ANB)U(ANCQC)
(these are the distributive laws for union and intersection)
(AN B)* = (A°) U (B)
iv. (AUB)¢= (AC) (B€) [prove i.-iv. using 1.(b) v.]
vo (Ui A)° = Misi (A7) and (N7 Ai)° = Ui, (A7)
((111) and (1V) are known as de Morgan’s Taws. Try to prove (v) using induction on
the deMorgan laws).
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2. Probability Theory - basic ingredients

(a) Random Experiment £: an idealized or conceptual experiment that could be repeated
infinitely often, always under identical conditions.

(b) Sample Space S: the set of possible outcomes (elementary events) of a random experi-
ment.
(many examples of experiments and their sample spaces were given in class)

(c) An event A is a subset of the sample space S of an experiment £.

If £ is performed and the outcome = € S is observed we say “‘z occurs”. In addition if
x € A we say “A occurs” and if z € A we say “A does not occur”.

Probability theory describes certain sets using the “language of events”. Some of this
terminology is shown in the following table.



Notation Name in Set Theory Name in Probability
(or equivalent expression)

A° complement not A
A=S universe certain event
A=¢ empty impossible event
ANB intersection both

T LA intersection all

(A°) N (B°) (AU B)° neither
i1 (A5) Uiz, Ai)* none
AUB union at least 1
(AN BY)° (not neither)
TLA; union at least 1
(N AS)© (not none)
(A°) U (B°) (AN B)° not both
i1 (A7) (Mg Ai)*® not all
ANB=¢ disjoint mutually exclusive
ACB inclusion A= B

As an exercise draw a Venn diagram of a sample space S with three events A, B, C' and
locate those outcomes where (i) exactly one event occurs; (ii) exactly two occur; (iii) all
occur; (iv) only A occurs; (v) only B and C occur.

(d) Probability measure P: a real-valued, non-negative function on events in S which satisfies
the following two axioms
i. P(S)=1
ii. P(AUB) = P(A)+ P(B) whenever AN B = ¢ (additivity)
The pair (S, P) is called the probability space of £.
(e) Facts about P
i. P does not decrease: P(A) < P(B) whenever A C B (implies that P(A) < 1, all A;
for a proof, take B = S and use Axiom i.).
. P(U-, A;) = P(A1) + -+ P(A,) if the A; are mutually exclusive; i.e., A;NA; = ¢
if i # j (we say P is finitely additive). The proof is by induction, using Axiom ii
(from (d), above).
iii. P(A°)=1— P(A).
iv. P(AUB) = P(A) + P(B) — P(ANB)
(f) A third axiom about P. We also assume that P is countably additive; i.e., that

[e.9]

P(QA» =3 P(4)

when the A; are mutually exclusive.



i. (Fact v. about P:) To assign a non-negative function to the subsets of sample space
S so that the three axioms hold, it suffices to assign a value P(w) > 0 to each
outcome w € S in such a way that

> P(w) =1

weS

In this way

P(A)|=P({J w) =|Euea P(w)

wEA

(by Axiom iii, if A is infinite, or by finite additivity otherwise), and the that Axioms
i and ii hold is now easily checked.

3. Conditional Probability An experiment £ with probability space (.S, P) is performed. The
outcome was seen by an observer who gives you the HINT: event “A has occurred”. You want
to revise the probability measure P on S to account for this new information. A natural way
is given by the following definition.

If P(A) > 0, P4, the conditional probability measure given A, is defined by

0 i w g A
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Some consequences of this definition are

(a) P4 is a probability measure [i.e., it satisfies Axioms 1-3] and points in A have the same
relative probability with P4 as they did with P.

(b) Pa(B) = P(AN B)/P(A).
This equation is known as the conditional probability formula.

(c) Let Hy,..., H, be events that partition S; i.e., they are mutually exclusive (H; N H; = ¢
when i # j) and exhaustive (i.e., S = U H;). We call them hypotheses. Then

P(A) = 3 P(H,) Py, (A).

i=1

(d) (Bayes Rule) Again Hy, ..., H, are hypotheses that partition the sample space S. Then
for each 1,

Py, (A)P(H;)

j=1 P(H;) P, (A)

i=1

Pa(H;) =

Think of the equation as telling you how to revise the original assessment of the prob-
ability of a hypothisis (H;) after you have some evidence from the experiment, namely
that the event A has occurred.

4. Independence: Events A and B (both with positive probability) are said to be independent
iff
P4(B) = P(B).

This means that the probability of B given the information that A has occurred (the left-hand
side) is the original probability of B, so A gives no new information about B’s probability.
Using the conditional probability formula (3b, above) for the left-hand side we see that P(B) =
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P(AN B)/P(A), and multiplying both sides of this equation by P(A) we get the product law

for independent events:
P(ANB)= P(A)P(B). (1)

This is sometimes taken as the definition of independence. If you divide this equation by
P(B) you see that if A and B are independent then also Pg(A) = P(A), which means that
in addition, B gives no information about A. Independence is a very important aspect of
Probability Theory.

When there are more than two events of interest the situation gets (much) more complicated.

(a) A family Ay,..., A, of n events is pairwise independent if each pair is. Thus for each
i # j Pa,(A;) = P(A,), or equivalently, P(A; N A;) = P(A;)P(A)).
Take S = {1,2,3,4} as the sample space and use equally likely probability. Let A; =
{1,2}, Ay = {1,3}, and A3 = {1,4}. This family is pairwise independent. But
Pa,na,(A3) = 1 # P(As). Thus, although no single event gives information about
the probability of any other, two, together, do give information. It is clear then, that we
need a stronger notion of independence to distinguish possible relations between events
when we are considering more than two of them.

(b) Take an integer k € {2,...,n}. A family Ay,..., A, of n events is k-wise independent if
every group of k of them satisfies the product law analogous to (1). Thus for any choice
of pointers i1,...,1, 1 <11 <1y < --- < i < n, we require that

P(All N Aiz M---N Alk) = P(AZ1)P(AZ2) o P(Alk) (2)

(c) The family Ay, ..., A, is mutually independent if it is k-wise independent for every k,
2<k<n.

(d) Here are some interesting examples that illustrate:

e The example in (a) is pairwise independent (k-wise with & = 2) but not 3-wise.

o Let S = {1,...,8} under equally likely probability and A; = {1,2,3,5}, Ay =
{1,2,4,6}, A3 ={1,3,4,7}, and Ay = {2,3,4,8}. This family is k-wise independent
for k < 4 but not mutually independent.

e Using the same probability space as above, let A; = {1,2,3,4}, Ay = {1,2,5,6},
and A3 = {1,3,7,8}. These are 3-wise independent but not pairwise independent.



