
CS206 Review Sheet 1 September 8, 2018

1. Set Theory Review We recall some concepts (and notations) from elementary set theory
that will be used throughout the course.

(a) x ∈ A means “x is an element of the set A”; x 6∈ A means x is not an element of A.

(b) relations between sets: The notation

i. A ⊆ B means that if x ∈ A then also x ∈ B (we say ′′A is a subset of B”).

ii. A ⊇ B means B ⊆ A (“A is a superset of B”).

iii. A ⊂ B means x ∈ A ⇒ x ∈ B and ∃y ∈ B : y 6∈ A (proper subset).

iv. A ⊃ B means B ⊂ A (proper superset)..

v. A = B means A ⊆ B and B ⊆ A.

(c) operations on sets: (From now on we assume A and B are both subsets of a given set S
(the “universe”); i.e., A,B ⊆ S)

i. Ac ≡ {x ∈ S : x 6∈ A} (complement). [≡ means “equal, by definition”].

ii. φ = Sc (the empty set).

iii. A ∩ B = {x ∈ S : x ∈ A and x ∈ B} (intersection).

iv. A ∪ B = {x ∈ S : x ∈ A or x ∈ B (or both)} (union).

v. A \B = {x ∈ S : x ∈ A and x 6∈ B}, (= A ∩Bc, the complement of B in A).

(d) set identities

i. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

ii. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
(these are the distributive laws for union and intersection)

iii. (A ∩ B)c = (Ac) ∪ (Bc)

iv. (A ∪ B)c = (Ac) ∩ (Bc) [prove i.-iv. using 1.(b) v.]

v. (
⋃n

i=1
Ai)

c =
⋂n

i=1
(Ac

i) and (
⋂n

i=1
Ai)

c =
⋃n

i=1
(Ac

i)
((iii) and (iv) are known as de Morgan’s laws. Try to prove (v) using induction on
the deMorgan laws).

2. Probability Theory - basic ingredients

(a) Random Experiment E : an idealized or conceptual experiment that could be repeated
infinitely often, always under identical conditions.

(b) Sample Space S: the set of possible outcomes (elementary events) of a random experi-
ment.
(many examples of experiments and their sample spaces were given in class)

(c) An event A is a subset of the sample space S of an experiment E .

If E is performed and the outcome x ∈ S is observed we say “x occurs”. In addition if
x ∈ A we say “A occurs” and if x 6∈ A we say “A does not occur”.

Probability theory describes certain sets using the “language of events”. Some of this
terminology is shown in the following table.
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Notation Name in Set Theory Name in Probability
(or equivalent expression)

Ac complement not A
A = S universe certain event
A = φ empty impossible event
A ∩B intersection both
⋂n

i=1
Ai intersection all

(Ac) ∩ (Bc) (A ∪ B)c neither
⋂n

i=1
(Ac

i) (
⋃n

i=1
Ai)

c none
A ∪B union at least 1

(Ac ∩ Bc)c (not neither)
⋃n

i=1
Ai union at least 1

(
⋂n

i=1
Ac

i)
c (not none)

(Ac) ∪ (Bc) (A ∩ B)c not both
⋃n

i=1
(Ac

i) (
⋂n

i=1
Ai)

c not all
A ∩ B = φ disjoint mutually exclusive
A ⊆ B inclusion A ⇒ B

As an exercise draw a Venn diagram of a sample space S with three events A, B, C and
locate those outcomes where (i) exactly one event occurs; (ii) exactly two occur; (iii) all
occur; (iv) only A occurs; (v) only B and C occur.

(d) Probability measure P : a real-valued, non-negative function on events in S which satisfies
the following two axioms

i. P (S) = 1

ii. P (A ∪B) = P (A) + P (B) whenever A ∩ B = φ (additivity)

The pair (S, P ) is called the probability space of E .

(e) Facts about P

i. P does not decrease: P (A) ≤ P (B) whenever A ⊆ B (implies that P (A) ≤ 1, all A;
for a proof, take B = S and use Axiom i.).

ii. P (
⋃n

i=1
Ai) = P (A1) + · · ·+P (An) if the Ai are mutually exclusive; i.e., Ai ∩Aj = φ

if i 6= j (we say P is finitely additive). The proof is by induction, using Axiom ii
(from (d), above).

iii. P (Ac) = 1− P (A).

iv. P (A ∪B) = P (A) + P (B)− P (A ∩B)

(f) A third axiom about P . We also assume that P is countably additive; i.e., that

P (
∞
⋃

i=1

Ai) =
∞
∑

i=1

P (Ai).

when the Ai are mutually exclusive.
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i. (Fact v. about P :) To assign a non-negative function to the subsets of sample space
S so that the three axioms hold, it suffices to assign a value P (w) ≥ 0 to each

outcome w ∈ S in such a way that

∑

w∈S

P (w) = 1.

In this way

P (A) = P (
⋃

w∈A

w) =
∑

w∈A P (w)

(by Axiom iii, if A is infinite, or by finite additivity otherwise), and the that Axioms
i and ii hold is now easily checked.

3. Conditional Probability An experiment E with probability space (S, P ) is performed. The
outcome was seen by an observer who gives you the HINT: event “A has occurred”. You want
to revise the probability measure P on S to account for this new information. A natural way
is given by the following definition.

If P (A) > 0, PA, the conditional probability measure given A, is defined by

PA(w) =

{

0 if w 6∈ A
P (w)/P (A) if w ∈ A

Some consequences of this definition are

(a) PA is a probability measure [i.e., it satisfies Axioms 1-3] and points in A have the same
relative probability with PA as they did with P .

(b) PA(B) = P (A ∩ B)/P (A).
This equation is known as the conditional probability formula.

(c) Let H1, . . . , Hn be events that partition S; i.e., they are mutually exclusive (Hi∩Hj = φ
when i 6= j) and exhaustive (i.e., S = ∪n

i=1
Hi). We call them hypotheses. Then

P (A) =
n
∑

i=1

P (Hi)PHi
(A).

(d) (Bayes Rule) Again H1, . . . , Hn are hypotheses that partition the sample space S. Then
for each i,

PA(Hi) =
PHi

(A)P (Hi)
∑n

j=1
P (Hj)PHj

(A)
.

Think of the equation as telling you how to revise the original assessment of the prob-
ability of a hypothisis (Hi) after you have some evidence from the experiment, namely
that the event A has occurred.

4. Independence: Events A and B (both with positive probability) are said to be independent
iff

PA(B) = P (B).

This means that the probability of B given the information that A has occurred (the left-hand
side) is the original probability of B, so A gives no new information about B′s probability.
Using the conditional probability formula (3b, above) for the left-hand side we see that P (B) =
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P (A∩B)/P (A), and multiplying both sides of this equation by P (A) we get the product law

for independent events:
P (A ∩ B) = P (A)P (B). (1)

This is sometimes taken as the definition of independence. If you divide this equation by
P (B) you see that if A and B are independent then also PB(A) = P (A), which means that
in addition, B gives no information about A. Independence is a very important aspect of
Probability Theory.

When there are more than two events of interest the situation gets (much) more complicated.

(a) A family A1, . . . , An of n events is pairwise independent if each pair is. Thus for each
i 6= j PAi

(Aj) = P (Aj), or equivalently, P (Ai ∩Aj) = P (Ai)P (Aj).

Take S = {1, 2, 3, 4} as the sample space and use equally likely probability. Let A1 =
{1, 2}, A2 = {1, 3}, and A3 = {1, 4}. This family is pairwise independent. But
PA1∩A2

(A3) = 1 6= P (A3). Thus, although no single event gives information about
the probability of any other, two, together, do give information. It is clear then, that we
need a stronger notion of independence to distinguish possible relations between events
when we are considering more than two of them.

(b) Take an integer k ∈ {2, . . . , n}. A family A1, . . . , An of n events is k-wise independent if
every group of k of them satisfies the product law analogous to (1). Thus for any choice
of pointers i1, . . . , ik, 1 ≤ i1 < i2 < · · · < ik ≤ n, we require that

P (Ai1 ∩Ai2 ∩ · · · ∩ Aik) = P (Ai1)P (Ai2) · · ·P (Aik). (2)

(c) The family A1, . . . , An is mutually independent if it is k-wise independent for every k,
2 ≤ k ≤ n.

(d) Here are some interesting examples that illustrate:

• The example in (a) is pairwise independent (k-wise with k = 2) but not 3-wise.

• Let S = {1, . . . , 8} under equally likely probability and A1 = {1, 2, 3, 5}, A2 =
{1, 2, 4, 6}, A3 = {1, 3, 4, 7}, and A4 = {2, 3, 4, 8}. This family is k-wise independent
for k < 4 but not mutually independent.

• Using the same probability space as above, let A1 = {1, 2, 3, 4}, A2 = {1, 2, 5, 6},
and A3 = {1, 3, 7, 8}. These are 3-wise independent but not pairwise independent.
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