Optimization in Arrangements

Stefan Langerman William Steiger
McGill University Rutgers University

Abstract

Many problems can be formulated as the optimization of functions in R? which
are implicitly defined by an arrangement of lines, halfplanes, or points, for example
linear programming in the plane. We present an efficient general approach to find the
optimum exactly, for a wide range of functions that possess certain useful properties.
To illustrate the value of this approach, we give a variety of applications in which we
speed up or simplify the best known algorithms. These include algorithms for finding
robust geometric medians (such as the Tukey Median), robust regression lines, and
ham-sandwich cuts.

1 Introduction

Given a set L of n non-vertical lines £, ..., ¢,, where line ¢; has equation y = ¢;(x) =
a;x + b;, many problems can be formulated as the optimization of some function fr, :
R? — R implicitly defined by L. Similarly, given a set P of n points pi,...,pp, many
problems can be formulated as the optimization of some function fp : B2 — R implicitly
defined by P. Without loss of generality, we will restrict ourselves to minimization
problems.

We outline a general approach to design simple and efficient algorithms to optimize
functions that possess certain good properties. First, these functions should be somehow
connected to the combinatorial structure of the arrangement of lines or of points on
which they are defined. For a function f;, on an arrangement of lines, we assume it is
known how to find an optimum point inside a cell of the arrangement. For a function fp
on a set of points, the combinatorial structure is more complex. Consider the (Z) lines
joining every pair of points. These lines decompose R? into O(n*) cells. We assume
that it is known how to find the optimum point inside each of these cells. Note that
in each cell, the ordering of the slopes of the lines from ¢ to the points in P is the
same for every ¢ in the cell. The time to find the optimum inside a cell will be denoted
Tc(n), and we assume that f can be evaluated at p € R? in time O(T¢(n)). We also
assume that within the same time bounds, we can find an optimum of fp restricted to
a line segment, or to a small convex polygon () that does not intersect any line of the
arrangement. We call the function that returns an optimum inside a cell the cell tool.
Moreover, we assume we have access to one of the following tools:

Sidedness: Given a line ¢, the sidedness tool decides in time Ts(n) which of the two
closed halfplanes bounded by /¢ contains an optimum point for f.

Restricted sidedness: This applies to a function f; on an arrangement of lines.
Given a line £ and a convex polygon @ (given as a list of its vertices) known
to contain an optimum point, restricted sidedness performs sidedness on £ in time
Tr(m), where m is the number of lines in L that intersect Q.

Witness: Given a point p € R?, the witness tool returns in time Ty (n) a halfplane h
containing p such that f(q) > f(p) for all ¢ € h. If the function f is level convez,
i.e. the set {qg € R?|f(q) < t} is convex for all ¢, then a witness is guaranteed to
exist for every point p.

The main results of this paper are stated in terms of these primitive operations:

Theorem 1 Suppose we have a restricted sidedness tool for a function fr on a set L
of n lines, as well as a cell tool for fr. Then we can find an optimum of fr in time
O(n + Tr(n) + Tc(n)). If we only have a sidedness tool the complexity to optimize fr,
is O((n + Ts(n))logn + Tc(n))

Theorem 2 Suppose we have a function fp on a set P of n points, and a sidedness
tool for fp. We can obtain an optimum in time O(nlog® n + Ts(n)logn + Tc(n)).

Theorem 3 Suppose we have a level convex function fp on a set P of n points, and
a witness tool for fp. We can obtain an optimum in time O((nlogn + Ty (n))log® n +
Te(n)logn) .

We prove these statements via algorithms shown to have the asserted complexity.
For arrangements of points, the algorithms we describe are probabilistic, but they can
be derandomized within the same time bounds using parametric search. Note that the
randomized algorithms are extremely simple and should be quite easy to implement.

These theorems were motivated by several specific geometric optimization problems.
We present some of these applications in Section 2 as an important part of the contribu-
tion of the paper, and to illustrate the potential value and range of applicability of our
methods. Some of the applications significantly improve previously known algorithms
for those problems. We also present applications which, though they only achieve the
time bounds of known methods, do so using much simpler algorithms. The proofs of the
theorems appear in Section 3 and Section 4, and contain some results of independent
interest.

Throughout the paper we apply the duality transform where a point ¢ = (a, b) maps
to the line D, = {(z,y) : y = az + b} and the non-vertical line £ = {(z,y) : y = ma + b}
maps to the point Dy = (—m,b) (and a vertical line z = ¢ would map to the point (t)
at infinity, the point incident with all lines of slope ¢; the point (co) at vertical infinity
is incident with all vertical lines). Tt is familiar that if ¢ is (i) above, (ii) incident with,
or (iii) below line ¢ then also D, is (i) above, (ii) incident with, (iii) below Dy, and also
that the vertical distance of ¢ from £ is preserved under D.

2 Some Applications

We show how to use the three main theorems to solve a variety of geometric optimization
problems. In addition to presenting these algorithms themselves, we want to illustrate
the applicability and utility of our methods. For each application we give a brief back-
ground and state the best current solution. Then we describe our new algorithm via the
relevant theorem, give its complexity, and try to indicate how the particular sidedness,
witness, and cell tools can be constructed. The full details will appear in the final paper.

The first four pertain to functions defined by arrangements of points and rely on
Theorems 2 and 3. The resulting algorithms improve and simplify previous algorithms
for these tasks. They also constitute the first known efficient algorithms for these
problems that are simple enough to be implemented.

1. Tukey median for points: A given set P of n points in R? is used to define depth.
The Tukey depth [27], or location depth of a point ¢ € R? is the smallest number
of points of P in any halfplane containing ¢q. That is,

7p(q) = min |hN P| (1)
halfspace haq

A Tukey median is a point of maximum depth.

A well known consequence of Helly’s Theorem (e.g., [13]) is that there is a point
r € R? (not necessarily in P) of depth at least [n/3]. Such a point is called a
centerpoint. The center is the set of all centerpoints.

Cole, Sharir and Yap [9] described an O(n(logn)®) algorithm to construct a cen-
terpoint, and subsequent ideas of Cole [8] could be used to lower the complexity
to O(n(logn)?). Recently, Jadhav and Mukhopadhyay [16] described a linear time
algorithm to find a centerpoint.

Matousek [19] attacked the harder problem of computing a Tukey median and
presented an O(n(logn)®) algorithm for that task. The algorithm uses two lev-
els of parametric search and e-nets, and would be quite difficult to implement.
Despite the fact that the Tukey median is of genuine interest in statistical appli-
cations, there is no really usable implementation. The fastest algorithms actually
implemented for this task have complexity ©(n?) [21]. We can prove

Lemma 1 Given a set P of n points in R%, a Tukey median can be found in
O(nlog®n) time.

Given ¢ € R?, we sort the points in P in radial order from g. Thus the depth of
g and a witness halfplane is obtained in Ty (n) = O(nlogn). Every cell in the
arrangement of the (72’) lines joining pairs of points in P has all its points of the
same depth, so the cell tool can return any point in T¢(n) = O(1). Finally since
Tp is level convex, Theorem 3 may be applied. [

Besides being much faster than other known methods, this algorithm could be
implemented easily.

2. A Tukey median for convex polygons: Applications in computer vision moti-
vated a variant of Tukey depth that is defined with respect to the area within a
given polygon @. The depth (in Q) of p € R? is defined by

TQ(p) = min Area(h N Q) (2)
halfspace hsp

A median is a point in @ of maximal depth.

Diaz and O’Rourke [10, 11, 12] developed an O(n®log®n) algorithm for finding
the Tukey median, n being the number of vertices of). If () is convex Brass and
Heinrich-Litan were able to compute a median in time O((n?log® na(n)) [6]. We
can show that

Lemma 2 Given a convex polygon Q C R% with n vertices, a median may be
found in time O(nlog®n).

For a convex polygon, a witness can be found in O(n) time, and it can be shown
that the optimum of 7¢ inside a cell can be found in O(n) time. The statement
now follows from Theorem 3.]

Recently, Morin gave a randomized linear time algorithm for this task [22].

3. Oja median: Given a set P of n points, the Oja depth of a point ¢ € R? is the
sum of the areas of the triangles formed by ¢ and every pair of points in P. An
Oja median is a point if minimum depth.

The first algorithm for finding the Oja median was presented by Niinimaa, Oja
and Nyblom [24] and ran in time O(n®). This was then improved to O(n®logn)
by Rousseeuw and Ruts, and then to O(n3(logn)?) and O(n?) space by Aloupis,
Soss and Toussaint [2].

The Oja median has to lie on the intersection between two lines of (12)) [24], the
Oja depth function can be shown to be level convex [2], and a witness can be
computed in Ty (n) = O(nlogn) time, and so, using Theorem 3, it is shown in [1]
that optimum can be found in O(nlog®n) time.

4. Ham-sandwich cut in arrangements: A givenset L = {/{1,...,¢,} of non-parallel,
non-vertical lines in the plane defines (’;) vertices V' = {{; N ¢;,i < j}. Consider
subsets A and B of those points each specified by some convex polygonal region,
or by the union of a constant number of such regions. A ham-sandwich cut for A
and B is a line that simultaneously splits the vertices in both A and B exactly
in half. We can show that using a duality transform, this problem corresponds
to minimizing a function for an arrangement of points for which sidedness can be
decided in Ts(n) = O(nlog® n) time. Applying Theorem 2 we get

Lemma 3 A ham-sandwich cut for subsets A and B of the vertices of an arrange-
ment of n lines can be found in O(nlog®n) time.

This compares to O(n?) complexity of the optimal planar ham sandwich cut al-
gorithm when applied to O(n?) points in R? [18]. Details are omitted here.

The next three applications pertain to functions defined on line arrangements. Al-
though they do not improve the time bounds of known algorithms, they are simple, and
they are of interest in illustrating the range of applicability of the technique.

5. Huber M-estimators: Huber (see [15]) proposed an interesting and useful method
of robust regression: Given n points (z;,y;) find a line y = ma + b to minimize

Zpk(yi — (mz; + b)),

where pi(t) = t2/2 if |t| < k and k|t| — k?/2 otherwise; k is a given non-negative
constant. In the dual we seek p = (ps,py) € R? to minimize

folp) = Zpk(py — (mipz + b3)),

given lines ¢; = {(z,y) : y = m;x + b; }. Restricted sidedness can be performed in
O(m) time and the optimum in a cell of the arrangement of the n given lines can
be found in O(n) time. Using Theorem 1 we obtain:

Lemma 4 The Huber M-estimator for n given points in the plane can be computed
in time O(n).

The first finite algorithm for the Huber M-estimator ([7]) was not even known to be
polynomial. If we take k = 0 we also get a linear time algorithm for L regression.
A linear time algorithm for computing the L; regression line was first discovered
by Zemel [29] by reducing the problem to an instance of the Multiple Choice L.P.
Problem (MCLPP), which Megiddo’s algorithm for linear programming [20] can
solve in linear time.

6. Fermat-Torricelli for lines: The Fermat-Torricelli points for aset L = {{y,...,4,}

of lines are defined to be the points that minimize:
fulp) = di(p.t:)
i=1

where d (p, £) denotes the perpendicular distance between point p and line /.

Roy Barbara [5] showed that a Fermat-Torricelli point for a set of n lines can always
be found at a vertex of the arrangement of L. He then proposed to evaluate f at
every vertex of the arrangement, obtaining an O(n?) algorithm. Using Theorem 1,
Aloupis et. al. [1] show:

Lemma 5 Given a set L of n lines, a Fermat-Torricelli point for L can be found
in O(n) time.

In their proof they show that restricted sidedness can be performed in O(m) time.
The statement now follows easily by applying Theorem 1.

7. Hyperplane depth: The hyperplane depth §(p) of a point p with respect to a

3

set L of lines is the minimum number of lines that intersects any ray from p. The
Hyperplane median is a point p that maximizes §1,(p). Note that the depth of all
the points inside a cell is the same.

Hyperplane depth was introduced by Rousseeuw and Hubert [25], motivated by
problems in robust regression. Using the duality transform, the lines in L are
mapped to points and the regression depth of a line in dual space is the minimum
number of points the line must meet in a rotation to vertical. This corresponds
exactly to the hyperplane depth of the corresponding point in the original problem.

Rousseeuw and Hubert point out that dz(p) can be computed in time O(nlogn)
for any p, and since there are O(n?) vertices in the arrangement, the hyperplane
median can be found in O(n®logn). They also mention an O(n?) algorithm [26].
In Amenta et. al. [3] it was observed that the arrangement of L can be constructed
in O(n?) and then, using breadth-first-search on the graph of adjacent cells, the
depth of every cell is obtained in the same O(n?) time. Van Kreveld et.al. [28]
described an O(n log? n) algorithm for finding the hyperplane median, using an
O(nlogn) algorithm to perform sidedness on a line.

In [17], we showed that restricted sidedness could be performed in O(mlogm)
time. Using Theorem 1, we obtain:

Lemma 6 Given a set L of n lines, a cell of mazimum depth can be found in
time O(nlogn).

Arrangements of lines

3.1 Equipartitions

To do efficient pruning in the line arrangement, we needed a partitioning method. Given
lines L = {¢1,...,£,} in general position in R? and two other non-parallel lines £4 and
{p, not in L, nor parallel to any line in L, we write C = £4 N¢p. Every line in L crosses
both £4 and £p. Partition the lines in L into 4 sets, one for each quadrant (I = +,+,
IT=+4,—, IIl = —,—, IV = — +), depending on whether the line crosses £4 above
or below C, and whether it crosses £p above or below C. A line that belongs to one
of these sets (quadrants) avoids the opposite quadrant. We say that £4 and ¢ form

an a-partition of L if each of the four groups contains at least a lines. We prove the
following result, of independent interest.

Lemma 7 Let L = {l1,...,4,} be a set of n lines in general position in R?. There
exists an |n/4]-partition of L and it can be found in time O(n).

N

m

u

There are analogous existence statements about equipartitions of points in R* by d
hyperplanes when d < 3. When d > 4 equipartitions of points do not always exist; the
case d = 4 is open (see e.g., Avis [4]). It would be interesting to know if there exist
three hyperplanes that equipartition n given hyperplanes in R3.

Proof: Let p; denote the jth smallest slope of the lines in L and let p = (tny2) +
t1+|n/2))/2- The median level of the lines in L with slope less than 4 (call this set L)
and the median level of the lines in L with slope greater than p (call this set Lg) cross
at a unique point C' € R2. Take £4 to be the line of slope u incident with C' and £ to
be the vertical incident with C. It is clear that they give an |n/4]-partition of L since
half the lines in L1 meet £4 to the left of C' and ¢ below C, and half meet /g above
C and meet ¢4 to the right of C. Similarly the lines of Ly split into the two remaining
quadrants.

In fact the construction could choose £4 to be a line of arbitrary slope. The set L
would be the next n/2 lines in the (clockwise) radial ordering, and Lo the remaining
n/2 lines. The plane is then rotated so that vertical direction separates the last line in
L; (in clockwise ordering) from the first line of L. Finally we point out that C is the
dual of the ham-sandwich cut for the (separated) sets of points to which L; and Ly are
dual.]

Even though there is an algorithm that finds a n/4-partition in linear time, it is not
trivial to implement. However there is an extremely easy way to randomly generate a
n/8-partition with positive constant probability. Pick a line £ uniformly at random in
L. Then pick randomly in L one line with slope smaller than ¢ and one line with slope
larger than ¢ and let C be the intersection of those two lines. Then pick £4 to be the
line with the same slope as ¢ through C, and £p to be the vertical line through C. We
can show that with constant probability p > 0, £4 and £p form a n/8-partition. This
then gives a Las Vegas algorithm in the usual way.

3.2 Line pruning

With the notion of equipartitions, the algorithm for Theorem 1 is quite easy to state.

Algorithm LineOpt(L)
L—1L
Q — R?
while |L| > 10
Find an |I:|/c-partiti0n £, {3, for some constant ¢ > 1
Perform a sidedness test on (4, {p restricted to)
Let h4 and hp be the two halfplanes returned
by the sidedness test.
Q—QNhanhp
L—{telltnhanhp+#¢}
endwhile
enumerate all the cells in the arrangement of Lin Q
for each cell, find the optimum and return the best

For correctness, the invariant that) contains an optimum point is maintained
throughout the algorithm, and at the end, all the cells remaining in @) are searched
for the optimum point. Since at every step L is reduced by a constant factor > 1/4, the
total number of steps is O(logn) and the running time is O((n + Ts(n))logn + Tc(n))
if sidedness is used. If restricted sidedness is used, the running time inside the loop
forms a geometric progression, and the total running time is O(n + Tgr(n) + Tc(n)). If
the randomized algorithm is used to find the partition, then the running times of the
algorithm are the same in the expected sense. This completes the proof of Theorem 1.

|

4 Arrangements of points

4.1 Best of candidates

Functions for arrangements of points seem to be more difficult to optimize. We first
show an algorithm for a slightly simpler problem: suppose we are given a set A* of
candidate points, the algorithm returns a point p such that fp(p) < fp(q) for every
q € A*. The algorithm maintains a set A of points “to beat” and uses the witness
tool. We will again need a pruning tool, but this time for points. Recall (from the
introduction) that the Tukey depth 7p(q) of a point ¢ with respect to a set P of points
is the minimum number of points of P that are contained in any halfplane that contains
g. Tt is known that a point of depth |P|/3 always exists and can be found in linear time
[16]. There is again a very simple way to obtain a point of depth |P|/8 with positive
constant probability: pick a point at random in P and draw a vertical line through it.
Then pick at random a point to the left, and a point to the right of that line. Join the
two points by a line and call p the intersection of that line and the vertical line. It can
be shown that with positive constant probability, 7p(p) > |P|/8.

Algorithm Bestof(A*)

A — A*; p* «— some arbitrary point of A.

Q«— R?

while A # ¢ repeat
find a point p such that 74(p) > c|A| for some constant ¢ < 1/3.
compute fp(p). Let h be a witness for p.
if fp(p) = fp(p®) then p* < p endif.
Q—QNh
A—A—(ANh)

endwhile

The invariant of the algorithm is that fp(p*) > fp(q) for all ¢ € A* — A. The
invariant is true at the beginning since A* — A = ¢, and the invariant is preserved after
each step of the while loop: fp(p*) > fp(p) > fr(q) for all ¢ € (AN h). As for the
running time of the algorithm, we know that |[ANh| > ¢|A| because 74(p) > c¢|A|. Thus
the size of A reduces by a constant factor at every step of the loop, and so the number of
loop steps is bounded by O(log |A*|). Each step of the loop takes time O(Tp (A)+Tw (n))
where Tp(A*) is the time needed to compute a point p of depth 7(p) > |A*|/c for
some constant ¢ < 1/3. The overall running time is O((Ip(A*) + Tw(n))log |A*|)
or O(Tc(A*) + Tw(n)log |A*|) if Tc(A*) = Q(|A*[%) for some e > 0. This is also
O(]A*| + nlognlog|A*|) since we may take Tc(A) = O(|A|) (e.g. use the algorithm of
Jadhav and Mukhopadhyay [16] for finding a centerpoint, or the randomized method
shown above).

For example, if we set A* to the set of all O(n*) optima for each cell of the arrange-
ment of lines in (123), the algorithm will find the optimum for fp, but the running time
would be O(n*) if we have to enumerate all of A* to use the centerpoint algorithm.
One could think of designing a faster algorithm to find a point of Tukey depth > ¢|A|
for the candidate points inside) without explicitly maintaining A, but this seems dif-
ficult even if the candidates are the vertices of the arrangement of lines in (]23), because
even deciding whether @) contains any vertex of the arrangement is 3SUM-hard (for a
definition of 3SUM-hardness, see [14]). Details of this fact appear in the full version.

4.2 Witness to sidedness

In this section, we show that the witness tool can be used to perform a sidedness test
on any given line.

Lemma 8 If a witness tool is available for a level conver function fp on an ar-
rangement of n points P, then a sidedness test for a line £ can be computed in time
Ts(n) = O((nlogn + Tw(n))logn + Te(n)).

Proof: Consider the set of lines (];) and let A* be the set of the (’2’) intersections
between those lines and £. Those intersections divide £ into O(n?) regions. If we run
the algorithm of the previous section, at the end of the algorithm, s = Q N/ is a segment
that does not intersect any of the (72’) lines. We can then use the cell tool to find the
optimum point p* on s in time T¢(n). because the witness tool is consistent with the
cell tool, neither the witness infinitesimally to the left of p* nor the one infinitesimally
to its right contain p*, so they exclude one side of the line.

Using the usual centerpoint construction algorithm for the set A in the main loop of
the algorithm would take O(n?) time. We will reduce this to O(nlogn) by exploiting
the structure of the problem.

First notice that all the points in A* lie on the straight line £. This implies that
there is a point on ¢ with Tukey depth |A|/2 with respect to any A C A*. At any
moment of the high depth algorithm, A = A* N R for some convex polygon R since
every step eliminates a halfplane. In our case, this means that A corresponds to the
points of A* that lie inside a segment on £. We will construct a point of Tukey depth
|A|/2 with respect to A using the duality transform. First, rotate the plane so that ¢
is vertical, then apply the duality transform. S becomes a set of lines, and ¢ becomes
a point 7y at infinity. Rotate the dual plane so that that point becomes the point at
vertical infinity. Any point a in A* is at the intersection between ¢ and a line £;; that
connects the two points p; and p; of P. Thus 7Ty,; is the vertex of the dual arrangement

at the intersection of the lines T}, and T}, and a is the vertical line passing through
this vertex and the point T, at vertical infinity. From this, we conclude that the line
segment in v corresponding to A at some point of the algorithm is a vertical slab in the
transformed space, and a point of Tukey depth |A|/2 with respect to A can be found
using vertex selection inside that slab. This can thus be done in O(nlogn) time. More
easily we can generate a point at random inside that slab by counting the number of
inversions between the ordering of the lines along the left boundary of the slab, and the
ordering of the lines along the right boundary of the slab, in O(nlogn) time. [

4.3 Line pruning

Now that we have a sidedness test, we could use the algorithm from Section 3 to prune
the lines, except that we have to be able to generate a \ﬁ| /c-partition quickly even
though L might be ©(n?). For this, we maintain L implicitly as the set of lines in (5)
that intersect 2, and we maintain Q).

As we saw before, generating a good partition randomly only requires to be able
to generate random lines from L. Using the duality transform, one can notice that
this is equivalent to generating a random vertex in an arrangement amongst the ones
inside a certain region. But this can be done in O(nlogn) time using a vertex counting
algorithm of Mount and Netanyahu [23]. Their algorithm is itself quite simple and easy
to implement. This completes the proof of Theorems 2 and 3.

References

[1] G. Aloupis, S. Langerman, M. Soss, and G. Toussaint. Algorithms for bivariate
medians and a fermat-torricelli problem for lines. In Proc. 13th Canad. Conf.
Comput. Geom., 2001.

[2] G. Aloupis, M. Soss, and G. Toussaint. On the computation of the bivariate median
and the fermat-torricelli problem for lines. Technical Report SOCS-01.2, School of
Computer Science, McGill University, Feb. 2001.

. Amenta, M. Bern, D. Eppstein, and 5.-H. Teng. Regression depth and center
3] N. A M. B D. E i d S.-H. T R ion depth and
points. Discrete Comput. Geom., 23(3):305-323, 2000.

[4] D. Avis. On the partitionability of point sets in space. In Proc. 1st Annu. ACM
Sympos. Comput. Geom., pages 116—120, 1985.

[5] R.Barbara. The fermat-torricelli points of n lines. Mathematical Gazette, 84:24—29,
2000.

[6] P. Brass and L. Heinrich-Litan. Computing the center of area of a convex polygon.
Technical Report B 02-10, Freie Universitat Berlin, Fachbereich Mathematik und
Informatik, March 2002.

[7] D. 1. Clark and M. R. Osborne. Finite algorithms for Huber’s M-estimator. SIAM
J. Sci. Statist. Comput., 7(1):72-85, 1986.

[8] R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. J.
ACM, 34(1):200 208, 1987.

9] R. Cole, M. Sharir, and C. K. Yap. On k-hulls and related problems. SIAM J.
Comput., 16:61-77, 1987.

[10] M. Diaz and J. O’Rourke. Computing the center of area of a polygon. In Proc.
1st Workshop Algorithms Data Struct., volume 382 of Lecture Notes Comput. Sci.,
pages 171-182. Springer-Verlag, 1989.

[11]

M. Diaz and J. O’Rourke. Chord center for convex polygons. In B. Melter,
A. Rosenfeld, and P. Bhattacharyai, editors, Computational Vision, pages 29-44.
American Mathematical Society, 1991.

M. Diaz and J. O’Rourke. Algorithms for computing the center of area of a convex
polygon. Visual Comput., 10:432-442, 1994.

H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of FATCS
Monographs on Theoretical Computer Science. Springer-Verlag, Heidelberg, West
Germany, 1987.

A. Gajentaan and M. H. Overmars. On a class of O(n?) problems in computational
geometry. Comput. Geom. Theory Appl., 5:165 185, 1995.

P. Huber. Robust Statistics. John Wiley, NY, 1981.

S. Jadhav and A. Mukhopadhyay. Computing a centerpoint of a finite planar set
of points in linear time. Discrete Comput. Geom., 12:291-312, 1994.

S. Langerman and W. Steiger. An optimal algorithm for hyperplane depth in the
plane. In Proc. 11th ACM-SIAM Sympos. Discrete Algorithms, 2000.

C.-Y. Lo, J. Matousek, and W. L. Steiger. Algorithms for ham-sandwich cuts.
Discrete Comput. Geom., 11:433-452, 1994.

J. Matousek. Computing the center of planar point sets. In J. E. Goodman, R. Pol-
lack, and W. Steiger, editors, Computational Geometry: Papers from the DIMACS
Special Year, pages 221-230. American Mathematical Society, Providence, 1991.

N. Megiddo. Linear-time algorithms for linear programming in R> and related
problems. STIAM J. Comput., 12:759-776, 1983.

K. Miller, S. Ramaswami, P. Rousseeuw, T. Sellars, D. Souvaine, I. Streinu, and
A. Struyf. Fast implementation of depth contours using topological sweep. In

Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms,
pages 690-699. ACM Press, 2001.

P. Morin. Personal communication, 2002.

D. M. Mount and N. S. Netanyahu. Efficient randomized algorithms for robust
estimation of circular arcs and aligned ellipses. Technical report, Dec. 1997.

A. Nniinimaa, H. Oja, and J. Nyblom. The oja bivariate median. Applied Statistics,
41:611-617, 1992.

P. J. Rousseeuw and M. Hubert. Depth in an arrangement of hyperplanes. Discrete
Comput. Geom., 22(2):167-176, 1999.

P. J. Rousseeuw and M. Hubert. Regression depth. J. Amer. Statist. Assoc.,
94(446):388 402, 1999.

J. W. Tukey. Mathematics and the picturing of data. In Proceedings of the In-
ternational Congress of Mathematicians (Vancouver, B. C., 197/), Vol. 2, pages
523-531. Canad. Math. Congress, Montreal, Que., 1975.

M. van Kreveld, J. Mitchell, P. Rousseeuw, M. Sharir, J. Snoeyink, and B. Speck-
mann. Efficient algorithms for maximum regression depth. In Proc. 15th ACM
Symp. Comp. Geom., pages 31-40, 1999.

E. Zemel. An O(n) algorithm for the linear multiple choice knapsack problem and
related problems. Inform. Process. Lett., 18(3):123-128, 1984.

10

