CS323 Test 1 Oct. 28, 2019

Instructions:

• Do all your work in the blue examination booklets.
• Write answers IN THE GIVEN ORDER, though you may work on them in any order.
• You may use one page of prepared notes.
• Show ALL your work. You will get little or no credit for an unexplained answer.
• The value of each question appears in parentheses, 78 points in all; you have 75 minutes.

1. \(f(x) = (x^2 - 3) \) has roots at \(w_1 = \sqrt{3} \) and \(w_2 = -w_1 \). We want a good approximation of \(w_1 \).
 (a) (8 pts) Sketch \(f \) on the interval \([-3,3]\). Then DO two steps of Newton’s FPI method for \(w_1 \), starting from \(P_0 = 3 \) (i.e., find \(P_1 \) and \(P_2 \)).
 (b) (7 pts) Will Newton’s method converge to \(w_1 \)? If “YES”, say why, and at what rate?
 (c) (8 pts) Now do one step of the secant method starting from \(P_0 \) and \(P_1 \), the initial Newton approximations. Which is better, the Newton \(P_2 \), or the secant \(P_2 \) approximation (explain your answer)? Will the secant method converge here? If so at what rate?
 (d) (7 pts) Now starting from the same \(P_0 \) used in Newtons method, do two steps of the chord method WITH \(m = 10 \). Will the cord iterations converge to a root?
 (e) (10 pts) Now we will use Aitkin’s method to accelerate the chord method iterations, starting with \(P_2 \). Once you have accelerated \(P_2 \), carefully describe what \textit{would be} the next two steps in following the Aitkin accelerations of the chord method.
 (f) (8 pts) Analogous to the question above, you are now asked to apply \textit{Steffanson accelleration} to the chord method iterations, starting with \(P_2 \), the second chord approximation. Carefully describe how to accelerate \(P_2 \) and then, describe \textit{what would be} the next two steps, once the chord \(P_2 \) was accellerated.

2. (15 pts) Consider the linear system

 \[
 A' = (A|b) = \begin{pmatrix}
 3 & 2 & | & 5 \\
 -4 & 1 & | & -3
 \end{pmatrix}.
 \]

 (a) Solve \(Ax = b \) using Gaussian elimination with partial pivoting. Make it explicit what you are doing in each step, and why. Would scaled-partial pivoting take any different steps?
 (b) Now find \(A^{-1} \) and use it to obtain the solution to our system, explaining your steps. Which of the two methods used more multiply and divide operations? Explain.