1. Consider the linear system

\[A' = (A|\bar{b}) = \begin{pmatrix} 1 & 3 & | & 4 \\ -2 & 4 & | & 2 \end{pmatrix}. \]

(a) (9 pts) Find \(A^{-1} \) using Gauss-Jordan elimination with NO row interchanges. Then use it to find the solution to \(Ax = \bar{b} \). Explain all your steps.

- We reduce \(A \) to the identity \(I \) by row operations. The same sequence applied to \(I \) produces \(A^{-1} \). Here are the steps:

\[
A = \begin{pmatrix} 1 & 3 \\ -2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 \\ 0 & 10 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 10 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I
\]

so doing the same ops on the identity gives

\[
I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} \frac{4}{10} & \frac{3}{10} \\ 2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} \frac{4}{10} & \frac{3}{10} \end{pmatrix} \rightarrow A^{-1}.
\]

You might verify that \(A^{-1}A = I \).

(b) (10 pts) Find the LUP factorization of \(A \) using Gaussian elimination with partial pivoting, then back-solving for the solution. Again, explain what you are doing.

- The partial pivoting strategy chooses row \(m \) to eliminate \(x_j \) from ALL equations below equation \(j \) if \(m \geq j \) and if \(|c_{m,j}| = \max |c_{i,j}|, i \geq j > 0 \). In our problem partial pivoting would choose equation 2 as the pivot for \(x_1 \) so initially \(L = I \), the identity, \(U \) is \(A \) with its two rows exchanged, and \(p \) is the vector \((2, 1)\) as a column.

We now do the row operation \(\text{row}_2 < -\text{row}_2 + (1/2)\text{row}_1 \) and record the pivot value \(-1/2\) in \(\text{row}_2 \) of \(L \) and we end with the factorization

\[
L = \begin{pmatrix} 1 & 0 \\ -1/2 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} -2 & 4 \\ 0 & 5 \end{pmatrix}, \quad p = \begin{pmatrix} 2 \\ 1 \end{pmatrix}
\]

(c) (9 pts) In this part, \(A' = (A|\bar{b}) \) is now a system of \(n \) linear equations in \(n \) unknowns where the coefficients satisfy (i) \(a_{ij} = 0 \) if \(i + j \leq n \) and (ii) \(a_{ij} \neq 0 \) if \(i + j = n + 1 \).

Argue that the system has a unique solution. How much work (the number of \(*\) and \(/\) steps used) is needed to find it? Explain how you got your answer.

- The coefficient matrix is

\[
A = \begin{pmatrix} 0 & \cdots & \cdots & \cdots & \cdots & 0 & a_{1,n} \\ 0 & \cdots & \cdots & \cdots & \cdots & a_{2,n} \\ 0 & 0 & 0 & \cdots & a_{3,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & \cdots & a_{n-1,n} & a_{n,n} \end{pmatrix}
\]

Once you understand the structure of \(A \) you easily see that there is a unique solution: \(x_n = b_1/a_{1,n} \) and the denominator is not zero. After that, use forward substitute (the value of \(x_n \) in eq. 2) to see that \(x_{n-1} = (b_2 - a_{2,n} \ast x_n)/a_{2,n-1}, \) and again, the denominator is not zero so all is “legal” etc., etc. Each such forward substitution step will determine a new component of the unique solution \(x \).
2. We seek the roots of \(f(x) = e^{x-1} - x \).

(a) (4 pts) Show that \(w = 1 \) is the only root of \(f \).

- Notice that \(f(1) = e^0 - 1 = 0 \) so \(w = 1 \) is a root of \(f \). Also \(f'(x) = e^{x-1} - 1 \) and so \(f'(1) = 0 \), showing that the root of \(f \) at \(x = 1 \) is a tangency root. Finally \(f''(x) = e^{x-1} > 0 \) for all \(x \) showing that the slope of \(f \) is increasing with \(x \). These facts show that as \(x \) increases, \(f \) decreases to zero at \(x = 1 \) and then increases with \(x \), and at a rate that also increases with \(x \). These facts show that \(w = 1 \) is the unique root of \(f \), and that \(f > 0 \) except at \(x = w \).

(b) (6 pts) Will Newton’s method converge if you start at a value \(P_0 \) that is close enough to 1? Explain. If “YES”, at what rate?

- Newton’s method will monotonically converge to 1 whether you start at \(P_0 < 1 \), or \(P_0 > 1 \). The convergence rate will be linear in both cases - tangency root.

(c) (5 pts) Can you use bisection to find the root? Explain.

- You cannot use bisection to find the root because \(f \) is always non-negative, a property that violates the starting conditions for bisection.

(d) *(5 pts)* Describe what will happen if you use FPI on \(g(x) = e^{x-1} \).

- If you start at \(P_0 < 1 \) FPI will converge monotonically to \(w = 1 \), but if you start at \(P_0 > 1 \) it will diverge to infinity, and at an increasing rate (successive steps \(|P_{n+1} - P_n| \) increase with \(n \)).

(e) (10 pts) Get three regula-falsi approximations to the root of \(f(x) = x^3 - 4 \) starting with the interval \((a, b) = (1, 2)\) and then accelerate the last one.

- You should show you know what a r.f. step is \([if on (a, b) \text{ we have } f(a) * f(b) < 0 \text{ then } P \leftarrow (a * f(b) - b * f(a))/(f(b) - f(a)) \text{ and we stop if } f(P) = 0 \text{ or continue with } (a, P) \text{ or } (P, b) \text{ whichever has } f \text{ opposite signs at the endpoints. I got } P_0 = 1.42857, P_1 = 1.55046, \text{ and } P_2 = 1.57916 \text{ and applying the acceleration formula } (P_2') = (P_2 - P_1)^2/(P_2 - 2 * P_1 + P_0) \text{ i got } P_2' = 1.58800\).

3. The following graph shows a function \(h(x) \) and the line \(y = x \). As the graph suggests, \(h''(x) > 0, a_2 < x < a_4 \). Also \(h(a_1) = h(a_3) = h(a_5) = h'(a_2) = h'(a_6) = 0 > h'(a_5) > -1 \) and \(h(a_i) = a_i \), when \(i = 2, 4, 5, 7 \).

NO PIC HERE

(a) (15 pts) We will do fixed point iteration on \(h \) \([P_{n+1} = h(P_n)]\) starting at \(P_0 = a_4 + \epsilon \), where \(\epsilon > 0 \) is much smaller than \(a_5 - a_4 \). Will it converge? If YES, to what value, and at what rate? Explain. If NO, what happens? Explain. Repeat for \(P_0 = a_4 - \epsilon \), where \(\epsilon > 0 \) is much smaller than \(a_4 - a_3 \). Can FPI reach \(x = a_4 \)? Explain.

- YES it converges to \(a_5 \). The rate is linear because \(h'(a_5) < 0 \).
 - At \(a_4 - \epsilon \) FPI will converge to \(a_2 \) and at a quadratic rate (at least) because \(g' \) is zero there.
 - FPI CAN reach \(x = a_4 \) as follows: if at \(P_n \) we have \(h(P_n) = a_4 \) then the next step is \(P_{n+1} = a_4 \).

(b) (5 pts) Repeat (a), now starting at \(P_0 = a_6 \).

- \(P_1 \) will be 0 and from there the iterations converge at least quadratically fast to \(a_2 \).
(c) (5 pts) Now we will use Newton's method on h starting at $p_0 = a_3 + \epsilon$, where $\epsilon > 0$ is much smaller than $a_4 - a_3$. Will it converge? If YES, to what value, and at what rate? Explain. If NO, what happens? Explain.

- Newton will converge to a_3 and at least a quadratic rate - it’s a non-tangency root.