Hand in solutions to problems marked with a (*) in class next Wed.
The other questions are for your own practice and benefit, but won’t be graded.
Question 6 is changed from the earlier version.

1. (*) Let \(f(x) = x^2 \) on \([0, 1]\). Set up, then solve, the normal equations for \(P_1(x) \), the (continuous) least squares approximation to \(f \) of degree = one, expanded in the monomial basis. Then find \(d_2(f, P_1) = \int_{0}^{1} (f(x) - P_1(x))^2 dx \), the error of the approximation.

2. \(C_1(x) \), the linear Tchebycheff interpolation of \(f \) is \(C_1(x) = x - 1/8 \). Compute \(d_2(f, C_1) \). Also compute \(d_{\infty}(f, C_1) = \max(|f(x) - C_1(x)|, 0 \leq x \leq 1) \) and \(d_{\infty}(f, P_1) \). What do these calculations show?

3. Now repeat using the basis \(\phi_0(x) = 1 \) and \(\phi_1(x) = 2x - 1 \). Check that the two expressions for \(P_1 \) are equivalent. Finally, show how to use the answer in 1) to find \(P_1 \) in the second basis without setting up and solving normal equations.

4. Repeat for \(g(x) = e^x \) on \([0, 1]\).

5. (*) Take \(x_i = i/5 \), \(i = 0, \ldots, 5 \). Set up and solve the normal equations to find the discrete least squares straight line approximation to \(f(x) = x^2 \) [from (1)], in the monomial basis and then in the basis used in problem 3.

6. (*) Find \(\phi_0, \phi_1, \phi_2 \) the first three orthogonal basis functions for the interval \([-2, 3]\). Then find the coefficient matrix of the normal equations to determine the FIRST (i.e., degree at most ONE, or LINEAR), continuous least squares approximation to \(f \) on this interval in the monomial basis.

7. Let \(f(x) = x^3 \) on \([-2, 3]\). Using the previous results,

 (a) Find \(P_2(x) \), the degree at most two (i.e., quadratic) continuous-least-squares approximation to \(f \), expanded in the monomial basis.

 (b) Now show how to express \(P_2 \) in the orthogonal basis using only the basis functions from 5.

 (c) Finally check the answer in b) by by solving the normal equations for \(P_2 \), expanded in the orthogonal basis.