(Write up convincing answers to the questions marked by an asterisk $\left(^{*}\right.$). Some of the unstarred questions will be worked in the recitations. $\left({ }^{* *}\right)$ indicates a more challenging problem. Your solutions are due in class on Wednesday, September 16, 2009.)

1. (Sets) Decide whether the following statements are TRUE or FALSE and give a convincing argument to support your claim; if FALSE, try to find a counterexample.
(a) $(A \cup B) \backslash C=A \cup(B \backslash C)$.
(b) $\left(^{*}\right)(A \cup B) \backslash A=B$.
(c) $(A \backslash B) \cup B=A$
(d) $\left(^{*}\right)(A \cup B)=(A \backslash B) \cup(B \backslash A) \cup(A \cap B)$.
(e) $(A \cap B)^{c} \backslash A^{c}=B^{c}$
(f) $\left(^{*}\right) \bigcap_{i=1}^{n} A_{i} \subseteq A_{1}$.
(g) $A_{1} \subset \bigcup_{i=1}^{n} A_{i}$.
(h) $\left({ }^{*}\right) \bigcup_{i=1}^{n} A_{i} \subseteq \bigcup_{i=1}^{m+n} A_{i}, m>0$; (i.e., $\bigcup_{i=1}^{k} A_{i}$ increases with k).

(j) $\left({ }^{* *}\right) A \cap B=(A \cap B \cap C) \cup(A \cap B \cap D)$.
2. (Random Experiments and Sample Spaces) For each of the following random experiments, carefully describe the sample space, S. Try to compute $|S|$, the size of S.
(a) $\left(^{*}\right) \mathrm{A}$ coin is tossed 4 times.
(b) A die is thrown 3 times.
(c) $\left(^{*}\right)$ Three people enter the elevator in the basement of a building with 5 floors. Each states where he will get out.
(d) A box has 10 chips. The first is numbered with a "1", the second with a "2", etc. A chip is drawn from the box, its value noted, and then it is returned to the box. Then a second chip is drawn and its value noted.
(e) As in (d) but the chips are NOT returned to the box.
(f) $\left(^{*}\right)$ A die is tossed. If it shows an EVEN face, a coin is thrown. Otherwise (the die showed an ODD face), the die is thrown 2 more times and the results are written down.
(g) $\left(^{*}\right)$ A 4 node, rooted binary tree is written down.
(h) A convex hexagon is triangulated.
(i) The hatcheck experiment with $n=3$ hats. (In this experiment, n people check their hats. When someone comes to claim his/her hat, they are given one of the unclaimed hats, not necessarily their own. Thus, the hats are redistributed, one to each person.)
(j) $\left(^{* *}\right)$ The hatcheck experiment with $n=4$ hats. How many outcomes are derangements (nobody gets their own hat)? Any conjecture about the behaviour of the fraction of derangements in a random permutation of $1, \ldots, n$?
3. (Events) Carefully describe the events $A, B, A \cup B$, and $A \cap B$ in the following sample spaces from 2 , above, and determine the sizes of these events.
(a) $\left.{ }^{*}\right)$ In 2a, $A=\{$ Head on the first and last tosses $\}, B=\{$ at least 2 tails $\}$.
(b) In $2 \mathrm{~b}, A=\{$ at least one even-sscore face $\}, B=\{$ all faces 4 or more $\}$.
(c) In $2 \mathrm{~d}, A=\{$ same chip both times $\}, B=\{$ chip 10 is not chosen $\}$.
(d) $\left(^{*}\right)$ In $2 \mathrm{f}, A=\{$ the coin is NOT thrown $\}, B=\{$ exactly one dice throw showed a four $\}$.
(e) $\left(^{*}\right) \operatorname{In} 2 \mathrm{~g}, A=\{$ the root has two children $\}, B=\{$ the tree has depth 4$\}$.
(f) $\left({ }^{* *}\right)$ As in 2 d , a box has 3 red and 5 black chips. In this experiment, you pick a chip, note its color, and return it to the box. The experiment continues until you have picked more red than black chips. (i) Describe the sample space and then let $A=\{$ stop on third pick $\}, B=\{$ stop before sixth pick $\}$.
