Given a continuous function $f(x)$, a value $x=w$ for which $f(w)=0$ is called a root or zero of f and is a solution to the equation

$$
f(x)=0 .
$$

We exclude the case where $f(x)=a x+b, a \neq 0$, because the solution is $x=-b / a$ and can be computed directly from the data describing f. This is the linear case. (Compare, e.g., to the case $\left.f(x)=x^{3}+17\right)$.

This problem arises in (at least) two natural ways: (i) If we have two functions $g(x)$ and $h(x)$, it is of interest to know when $g(x)=h(x)$. In this case we have a root problem for $f(x)=g(x)-h(x)$ [example: $g(x)=e^{-x}$ and $h(x)=\sin (x)$]; (ii) We have a function $F(x)$ and we want to find where it is minimized or maximized. In this case we have a root problem for $f(x)=F^{\prime}(x)$.

All the methods we study share the feature that they "generate" a sequence of approximations P_{0}, P_{1}, \ldots that is intended to converge to a root w of f (by continuity, $f\left(P_{n}\right) \rightarrow f(w)=0$ as $n \rightarrow \infty)$.

1. Method 1 - Bisection: The method starts (STEP 0) with an interval $I_{0}=\left(u_{0}, v_{0}\right), u_{0}<v_{0}$, and f has opposite signs at the endpoints; thus $f\left(u_{0}\right) f\left(v_{0}\right)<0$. By the intermediate value theorem, f has a root $w \in I_{0}$. We bisect I_{0} with the midpoint, $P_{0}=\left(u_{0}+v_{0}\right) / 2$. This is the initial approximation to w. If $f\left(P_{0}\right)=0$ we STOP. Otherwise we continue into the next step, STEP 1, with one of the halves (i) $I_{1}=\left(u_{0}, P_{0}\right)$ if $f\left(u_{0}\right) f\left(P_{0}\right)<0$ or else (ii) $I_{1}=\left(P_{0}, v_{0}\right)$ if $f\left(P_{0}\right) f\left(v_{0}\right)<0$ (Precisely one of these two situations must hold - WHY?). Clearly $\left|I_{1}\right|=\frac{1}{2}\left|I_{0}\right|=\left(v_{0}-u_{0}\right) / 2(|I|=v-u$ denotes the length of the interval $I=(u, v))$. In STEP $n>0$ we have (from the previous step) an interval $I_{n}=\left(u_{n}, v_{n}\right)$, and f has opposite signs at the endpoints $\left(f\left(u_{n}\right) f\left(v_{n}\right)<0\right)$. By the intermediate value theorem, f has a root $w \in I_{n}$. We bisect I_{n} with

$$
\begin{equation*}
P_{n}=\left(u_{n}+v_{n}\right) / 2 . \tag{1}
\end{equation*}
$$

If $f\left(P_{n}\right)=0$ we STOP. Otherwise we continue into the next step, STEP $n+1$, with one of the halves (i) $I_{n+1}=\left(u_{n}, P_{n}\right)$ if $f\left(u_{n}\right) f\left(P_{n}\right)<0$ or else (ii) $I_{n+1}=\left(P_{n}, v_{n}\right)$ if $f\left(P_{n}\right) f\left(v_{n}\right)<0$ (Again, precisely one of these two situations must hold). Clearly $\left|I_{n+1}\right|=\frac{1}{2}\left|I_{n}\right|=\left(v_{n}-u_{n}\right) / 2$.

- Let $e_{n}=P_{n}-w$ denote the error if we stop at STEP n and take P_{n}, the $n^{\text {th }}$ bisection, as an approximation of the root w. Notice that $\left|e_{n}\right|<\left|I_{n}\right| / 2$ because P_{n} and w are in the same half of I_{n}. Clearly $\left|I_{n}\right| / 2=\left(\left|I_{n-1}\right| / 2\right) / 2=\cdots=\left|I_{0}\right| / 2^{n+1} \rightarrow 0$ as $n \rightarrow \infty$. This proves that the bisection method converges when started correctly.
- We can know in advance how many bisections steps will assure a suitably small error. Given $\varepsilon>0$, suppose it is required that $e_{n}<\varepsilon$ if we stop at STEP n. Then from $\left|e_{n}\right|<\left(v_{0}-u_{0}\right) / 2^{n+1}$, we deduce that $n>\log _{2}\left(\left(v_{0}-u_{0}\right) / \varepsilon\right)-1$ steps are sufficient. In a computer implementation of the bisection method, we might also like to require that $\left|f\left(P_{n}\right)\right|$ is small before we accept P_{n} as a suitable approximation to w.

2. Method 2 - Regula-Falsi Suppose $u_{n}<v_{n}$ and $f\left(u_{n}\right) f\left(v_{n}\right)<0$. We will use more information about f than the mere fact that it has opposite signs at the endpoints of $I_{n}=\left(u_{n}, v_{n}\right)$. Motivated by the observation that when I_{n} is small enough, f "looks like" a straight line on this interval, we divide I_{n} by the point where the line through $A=\left(u_{n}, f\left(u_{n}\right)\right)$ and $B=\left(v_{n}, f\left(v_{n}\right)\right)$ meets the x -axis. This is the point whose x -coordinate is

$$
\begin{equation*}
P_{n}=\frac{u_{n} f\left(v_{n}\right)-v_{n} f\left(u_{n}\right)}{f\left(v_{n}\right)-f\left(u_{n}\right)} . \tag{2}
\end{equation*}
$$

Regula-falsi $I S$ bisection except that it uses the above instead of $P_{n}=\left(u_{n}+v_{n}\right) / 2$.

- Regula-falsi converges if it is started correctly, but not because $\left|I_{n}\right| \rightarrow 0$ (simple examples show this statement to be false). This underlies the problem with using regula-falsi in practice - at what step, n, should it be stopped? Since $\left|I_{n}\right|$ may remain large, we can only stop when $\left|f\left(P_{n}\right)\right|$ is small but unfortunately, this is no guarantee that e_{n} is small.
- You should study handout 1 (through the homepage) - "Informative Traces of Bisection and Regula-Falsi".

3. Fixed Point Iteration A value $x=u$ is a fixed point of a function $h(x)$ if $h(u)=u$. Fixed points are thus the x-coordinates of the points where the graph of h meets the line $y=x$. There is a beautiful algorithm to find fixed points. It is called fixed point iteration (FPI), or functional iteration:

- Guess P_{0}
- $n \leftarrow 0$
- WHILE $P_{n} \neq h\left(P_{n}\right)$ DO
- $\quad P_{n+1} \leftarrow h\left(P_{n}\right)$
- $\quad n \leftarrow n+1$
- ENDWHILE
- RETURN P_{n} (it is a fixed point)

We might hope that $P_{n} \rightarrow w$ but we should not expect it to stop in a finite number of steps with $P_{n}=h\left(P_{n}\right)$. To stop the above algorithm in practice, we would require $\left|P_{n}-h\left(P_{n}\right)\right|$ to be small, say less than ε. The condition in the WHILE would then be WHILE $\left|P_{n}-h\left(P_{n}\right)\right| \geq \varepsilon$ DO. We then return P_{n}, an approximate fixed point, after n steps.
(a) Contraction mapping Principle: A function $h(x)$ is a contraction on an interval $I=(a, b)$ if there is a constant $k<1$ such that for all pairs $u, v \in(a, b)$,

$$
|h(u)-h(v)| \leq k|u-v| ;
$$

ie., $h(u)$ and $h(v)$ are closer than u and v were. Therefore application of h "contracts", or brings function values closer than their arguments were. The mean value theorem implies that h is a contraction if $\left|h^{\prime}(x)\right| \leq k$ for all $x \in(a, b)$, some $k<1$.
The contraction mapping principle states that if (A) $h(w)=w,(\mathrm{~B}) h$ is a contraction on an interval $I=(w-\delta, w+\delta)$ for some $\delta>0$, and (C) $P_{0} \in I$, then $P_{n} \rightarrow w$ (in other
words, the FPI algorithm above produces approximations $P_{n}=h\left(P_{n-1}\right)$ that converge to a fixed point $w=h(w))$. In fact if we knew that some $P_{j} \in I$ that is enough in condition C), since we could just (re)start the iterations at P_{j}.

Sometimes it is difficult to find an interval I satisfying condition (B). An alternative version of the theorem uses condition (B'), " h is a contraction on an interval I that contains the fixed point w and satisfies the condition that $h(x) \in I$ whenever $x \in I$."
(b) Relevance to Root-Finding: Suppose we want to find roots of $f(x)$. Define

$$
\begin{equation*}
g(x)=x-\phi(x) f(x) \tag{3}
\end{equation*}
$$

where (i) ϕ is continuous and (ii) $\phi(x)=0$ implies $f(x)=0$. Clearly $g(w)=w$ if and only if $f(w)=0$; i.e., the roots of f are the fixed points of g. Our approach will be to specify the function $\phi(x)$ in (3) and then do FPI on the resulting $g(x)$:

$$
P_{n+1} \leftarrow g\left(P_{n}\right)
$$

Each different way we choose $\phi(x)$ in (3) and apply FPI to the resulting $g(x)$ gives a new root-finding method for $f(x)$ [trite example: $\phi(x)=1$]. If $P_{n} \rightarrow w=g(w)$, this FPI has produced a root-finding method that converged to a root of $f(x)$; i.e., it "worked".
(c) Convergence Rate of FPI: If FPI converges, $P_{n} \rightarrow w=g(w)$, so the errors $e_{n} \equiv$ $P_{n}-w \rightarrow 0$. The question is how rapidly? Since $P_{n+1}=g\left(P_{n}\right)$ (def. of FPI) and $w=g(w)$ (def. of fixed point),

$$
\begin{equation*}
\left|e_{n+1}\right|=\left|P_{n+1}-w\right|=\left|g\left(P_{n}\right)-g(w)\right| . \tag{4}
\end{equation*}
$$

Applying the mean value theorem [see also Taylor's theorem, $n=0$ (Course Notes 3, eq (8))], there is a point θ_{n} between P_{n} and w for which $g\left(P_{n}\right)-g(w)=g^{\prime}\left(\theta_{n}\right)\left(P_{n}-w\right)$. Using this in (4), and assuming g^{\prime} is continuous,

$$
\begin{equation*}
\left|\frac{e_{n+1}}{e_{n}}\right|=\left|g^{\prime}\left(\theta_{n}\right)\right| \rightarrow\left|g^{\prime}(w)\right| . \tag{5}
\end{equation*}
$$

I. Assuming $\left|g^{\prime}(w)\right| \neq 0$ (and we may assume it is $\left.<1\right),\left|g^{\prime}(w)\right|$ is the fraction by which $\left|e_{n}\right|$ is reduced if we take one more FPI step and stop with e_{n+1}, n large. This is linear convergence, where - in the limit - errors are reduced by a fixed fraction in each step.
II. If $g^{\prime}(w)=0$ both numerator and denominator of the ratio in (5) converge to zero, but the numerator converges strictly faster. In this case Taylors theorem, $n=1$, shows (since $g^{\prime}(w)=0$) that $g\left(P_{n}\right)-g(w)=\frac{1}{2} g^{\prime \prime}\left(\theta_{n}\right)\left(P_{n}-w\right)^{2}$ so using (4), and assuming the continuity of $g^{\prime \prime}$,

$$
\begin{equation*}
\left|\frac{e_{n+1}}{e_{n}^{2}}\right|=\frac{1}{2}\left|g^{\prime \prime}\left(\theta_{n}\right)\right| \rightarrow \frac{1}{2}\left|g^{\prime \prime}(w)\right| . \tag{6}
\end{equation*}
$$

Assuming $g^{\prime \prime}(w) \neq 0$ the error on the next step is about $\left|g^{\prime \prime}(w)\right| / 2$ times the square of the current error, n large. This is quadratic convergence. In general, the order of convergence k, of FPI, is defined by

$$
k=\min \left(j>0: g^{(j)}(w) \neq 0\right)
$$

order $k=1$ is linear convergence, order 2 is quadratic, etc. If the order of convergence is k and $g^{(k)}$ is continuous, then

$$
\frac{e_{n+1}}{e_{n}^{k}}=\frac{1}{k!}\left|g^{(k)}\left(\theta_{n}\right)\right| \rightarrow \frac{1}{k!}\left|g^{(k)}(w)\right|
$$

a non-zero constant.
4. Method 3 - Chord Method: There is a parameter $m \neq 0$ for which we choose a fixed, constant value. Using $\phi(x)=1 / m$ in (3), do FPI on $g(x)=x-f(x) / m$. Thus

$$
\begin{equation*}
P_{n+1}=P_{n}-\frac{1}{m} f\left(P_{n}\right)=g\left(P_{n}\right) . \tag{7}
\end{equation*}
$$

Rearranging the above expression we see that

$$
m=\frac{f\left(P_{n}\right)-0}{P_{n}-P_{n+1}}
$$

so the chord method chooses P_{n+1} as the x-coordinate of the point where the line of slope m through $\left(P_{n}, f\left(P_{n}\right)\right)$ meets the x-axis.

- convergence: For the chord method $\left|g^{\prime}(x)\right|=\left|1-f^{\prime}(x) / m\right|$. Thus we know that if w is a root of f and if $0<f^{\prime}(x) / m<2$ for all values of $x \in I=(w-\delta, w+\delta)$, then iterations in (7) will converge as long as $P_{0} \in I$ (in fact if we knew that some $P_{j} \in I$ that is enough, since we just (re)start the iterations at P_{j}).
- convergence rate: Suppose the iterations in (7) converge. Since $g^{\prime}(w)=1-f^{\prime}(w) / m=$ 0 only if $m=f^{\prime}(w)$, we conclude that the chord method is linear except for a single choice of m as $f^{\prime}(w)$, in which (lucky) case it has at least a quadratic convergence rate.

5. Method 4 - Newton's Method: Take $\phi(x)=1 / f^{\prime}(x)$ in (3) and do FPI on $g(x)=$ $x-f(x) / f^{\prime}(x)$. Thus

$$
\begin{equation*}
P_{n+1}=P_{n}-\frac{f\left(P_{n}\right)}{f^{\prime}\left(P_{n}\right)}=g\left(P_{n}\right) . \tag{8}
\end{equation*}
$$

Rearranging the above expression we see that

$$
f^{\prime}\left(P_{n}\right)=\frac{f\left(P_{n}\right)-0}{P_{n}-P_{n+1}}
$$

so Newton's method chooses P_{n+1} as the x-coordinate of the point where the tangent line to f at $x=P_{n}$ meets the x-axis.

- convergence: For Newton's method

$$
g^{\prime}(x)=\frac{f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}}
$$

If (i) $f^{\prime \prime}$ is continuous, (ii) $f(w)=0$, and (iii) $f^{\prime}(w) \neq 0$ then $g^{\prime}(w)=0$ and g^{\prime} is continuous. Therefore there is an interval $I=(w-\delta, w+\delta)$ on which $\left|g^{\prime}(x)\right|<1$. This proves that Newton's method converges if P_{0} is close enough to w (unfortunately it is hard in some cases to know precisely what "close enough" means). This convergence result is still true when $f^{\prime}(w)=0$ (i.e., (iii) fails and we have a tangency root), but the proof argument used above no longer works.

- convergence rate: Suppose the iterations in (8) converge and that $f^{\prime}(w) \neq 0$. The equation above shows $g^{\prime}(w)=0$, so in the case of a non-tangency root, Newton's method is at least quadratic. It is not difficult to show that when Newton's method converges to a tangency root w (i.e., $f(w)=0$ and $f^{\prime}(w)=0$), the rate is linear.

6. Secant Method: If we don't know f^{\prime} but still want to use Newton's method, we could replace $f^{\prime}\left(P_{n}\right)$ in (8) by the approximation

$$
f^{\prime}\left(P_{n}\right) \approx \frac{f\left(P_{n}\right)-f\left(P_{n-1}\right)}{P_{n}-P_{n-1}}
$$

This gives the iteration for the secant method,

$$
\begin{equation*}
P_{n+1}=\frac{P_{n-1} f\left(P_{n}\right)-P_{n} f\left(P_{n-1}\right)}{f\left(P_{n}\right)-f\left(P_{n-1}\right)}, n \geq 1 . \tag{9}
\end{equation*}
$$

It is not a fixed point iteration (in fact, compare (9) with (2)). It needs P_{0} and P_{1} to start, and each iteration is a function of the previous two. P_{n+1} is the x-coordinate of the point where the line joining $A=\left(P_{n-1}, f\left(P_{n-1}\right)\right)$ and $B=\left(P_{n}, f\left(P_{n}\right)\right)$ meets the x-axis. When the iterations in (9) converge to a non-tangency root w,

$$
\frac{e_{n+1}}{e_{n} e_{n-1}} \rightarrow c>0
$$

so its rate is clearly faster than linear but slower than quadratic. In fact it may be shown that $e_{n+1} / e_{n}^{(1+\sqrt{5}) / 2} \rightarrow C>0$. The exponent is about 1.618.
7. Acceleration of Convergence: Instead of taking $P_{n+1}=g\left(P_{n}\right)$, as in FPI, we will use P_{n+1}^{\prime} as the x-coordinate of the point where the line joining $A=\left(P_{n-1}, g\left(P_{n-1}\right)\right)$ and $B=$ $\left(P_{n}, g\left(P_{n}\right)\right)$ meets the line $y=x$ (looking at the graph of g near a fixed point shows why this may be a good idea). Using $P_{n+1}=g\left(P_{n}\right), P_{n}=g\left(P_{n-1}\right)$, and a little algebra,

$$
P_{n+1}^{\prime}=P_{n+1}-\frac{\left(P_{n+1}-P_{n}\right)^{2}}{P_{n+1}-2 P_{n}+P_{n-1}}
$$

P_{n+1}^{\prime} is called the acceleration of P_{n+1}. Writing $\Delta P_{j}=P_{j}-P_{j-1}$ and $\Delta^{2} P_{j}=\Delta\left(\Delta P_{j}\right)=$ $\Delta P_{j}-\Delta P_{j-1}=P_{j}-2 P_{j-1}+P_{j-2}$, we get Aitken's delta-squared formula:

$$
\begin{equation*}
P_{n+1}^{\prime}=P_{n+1}-\frac{\left(\Delta P_{n+1}\right)^{2}}{\Delta^{2} P_{n+1}} \tag{10}
\end{equation*}
$$

P_{n+1}^{\prime} may be better than P_{n+1} because of the following: Suppose a_{0}, a_{1}, \ldots is a sequence of numbers that converges to w at a linear rate (and $a_{i} \neq w$). Apply the acceleration formula to a_{2}, a_{3}, \ldots (i.e., $a_{i}^{\prime}=a_{i}-\left(\Delta a_{i}\right)^{2} / \Delta^{2} a_{i}, i \geq 2$) to obtain $a_{2}^{\prime}, a_{3}^{\prime}, \ldots$.. Then

$$
\frac{\left|a_{n}^{\prime}-w\right|}{\left|a_{n}-w\right|} \rightarrow 0
$$

i.e., the accelerated sequence converges to the same limit, only faster. There are two main ways to use the acceleration idea.

- Aitkin's Method: P_{n} denotes the approximations of any linear method (regula-falsi, chord, Newton with a tangency root, etc.). Just accelerate each P_{i} and stop at step n if $\left|f\left(P_{n}^{\prime}\right)\right|<\varepsilon$ (or if $\left|P_{n}^{\prime}-P_{n-1}^{\prime}\right|$ is small).
- Steffanson's Method: The basic method is some linearly converging FPI, like Newton with a tangency root. From P_{0} we do two FPI steps, $P_{1}=g\left(P_{0}\right), P_{2}=g\left(P_{1}\right)$. At this point we accelerate P_{2} by

$$
Q_{0}=P_{2}-\frac{\left(\Delta P_{2}\right)^{2}}{\Delta^{2} P_{2}} .
$$

The basic iteration starts from Q_{i}. Two FPI steps yield $P_{1}=g\left(Q_{i}\right)$ and $P_{2}=g\left(P_{1}\right)$ and $Q_{i+1}=P_{2}-\left(\Delta P_{2}\right)^{2} /\left(\Delta^{2} P_{2}\right)$ is the acceleration of P_{2}. We stop when $\left|Q_{i}-Q_{i-1}\right|<\varepsilon$. You should study Handout number 3 illustrating the value of accelleration.

