Frontiers of Networking

Lecture 24, Computer Networks (198:552)
Fall 2019
A 10,000-foot recap of the class

- Foundational
 - layering, control/data sep, SDN, congestion control, data centers
- Packet processing at the edge
 - Flexible software routers, transport, user-space networking
- Packet processing in the core
 - Flexible hardware routers, network functions, scheduling
- Congestion control
 - Wide area, multipath, data center
- Verification and synthesis
The times they are a-changin’…

• Technological constraints
 • The slowdown of Moore’s law and the rise of accelerators
 • Disaggregation of compute and storage: pool and use remotely

• Old tools anew
 • Machine learning: support and be supported

• Old and new networks
 • Edge networks, blockchain networks

Today: some examples of recent work along these directions
The decline of sequential processing

Source: created by C. Batten; extracted from Kozyrakis et al MICRO’10
Datacenter tax: Moving data == $$

Source: Profiling a warehouse-scale computer, ISCA’15
Accelerators: DC == distributed computer

• Don’t burn cores doing data movement
 • Use acceleration

• Provide high performance to a single connection
 • High throughput (100 Gbit/s+), low latency

• Retain host-stack programmability
 • Don’t get stuck with hardware you can’t control
Azure SmartNICs: Bump in the wire

Source: Firestone et al. NSDI
Azure SmartNICs: Bump in the wire

Other architectures possible: multi-core and manycore
Machine learning

• Algorithmic techniques to learn functions from inputs to outputs

• Chief distinction among approaches: kinds of functions that can be learned

• Examples: mapping images to labels, predicting next match score from historical scores, etc.
Neural networks

• Neuron (perceptron): tries to approximate a function \(f^* \)
 • … internally using a (parameterized) function \(f \)
 • ie: \(y = f(x; p) \)
 • Learning: Choose parameter \(p \) to “best approximate” \(f^* \)

• Example representational functions:
 • Linear function on inputs
 • Sigmoid over linear combination of inputs

• Layers: can compose these functions with each other
 • Structure of composition forms the “network” of neurons
Expressiveness of neural networks

- Universal approximation theorem
 - Any “reasonable” function can be represented to within arbitrary error over all inputs

- Doesn’t mean any function can be learned, however

- The size of the network is unbounded
Applications in networking

• **ML for systems**: good to apply ML when:

 • Optimal solutions are hard to compute
 • State of the art mostly constitutes **heuristics**
 • Existing solutions use a **model of the system**

• Some examples…
Pensieve: Video bit-rate adaptation

[Neural adaptive video streaming with Pensieve
Hongzi Mao et al, SIGCOMM’17]
Pensieve: Video bit-rate adaptation

• **State:**
 - Past chunk throughput
 - Past chunk download time
 - Next chunk sizes (at varying bitrates)
 - Current buffer size
 - Number of chunks left
 - Last chunk bit-rate

• **Use raw observation signals; no network “model”**

• Function learned: map state to requested bit-rate
Remy: Congestion control

• **State:**
 - Interarrival time between ACKs (EWMA)
 - Time between TCP sender timestamps (EWMA)
 - Ratio between most recent RTT and minimum RTT

• **Action:**
 - A multiple to the current congestion window
 - Increment or decrement to the congestion window
 - A lower bound on time between successive packet transmissions

• Simulate multiple senders & choosing best rule given the state
 - Subdivide the state space used in the most used rule
Remy: Congestion control

Figure 4: Results for each of the schemes over a 15 Mbps dumbbell topology with \(n = 8 \) senders, each alternating between flows of exponentially-distributed byte length (mean 100 kilobytes) and exponentially-distributed off time (mean 0.5 s). Medians and 1-\(\sigma \) ellipses are shown. The blue line represents the efficient frontier, which here is defined entirely by the RemyCCs.

[Computer-generated congestion control, Winstead and Balakrishnan, SIGCOMM’13]
Building Systems for ML

• Data center architectures for ML
 • How to train really large networks?
 • Can we make apps using ML really fast?
 • What programmatic frameworks can make developing ML apps really easy?

• Edge video analytics
 • Points of presence next to user devices
 • Cellular base stations
Living on the edge...

- **IoTs**
 - mobile phones
 - Cameras: street intersections, shopfront, car dashcam
 - Sensors

- Constraint: significantly less powerful than compute clusters
 - Power, compute, bandwidth

- But want to implement sensor data processing
 - Ex: Video analytics using neural networks
Partitioning edge video analytics
Flexible auto-encoding of features

“Neural networks meet physical networks”, Chinchali et al., HotNets 2018
Example: Drone-video-based tracking

\[a_1 = [1, 1, 0, 0] \]

\[a_3 = [a_3^4, a_3^5, a_3^6, a_3^7] \]
The times they are a-changin’…

• Technological constraints
 • The slowdown of Moore’s law and the rise of accelerators
 • Disaggregation of compute and storage: pool and use remotely
• Old tools anew
 • Machine learning: support and be supported
• Old and new networks
 • Edge networks, blockchain networks

Today: some examples of recent work along these directions
Your thoughts?

What are you excited about? What would you like to work on?
Technological constraints: Moore’s law

- Processors aren’t clocked faster any more (Dennard scaling)
- Soon, can no longer pack more transistors in the same area (feature size limits)

- Implication (1): Application code won’t automatically get faster

- Implication (2): Need to re-design applications or the hardware from the ground up
Trend: compute offloads to **accelerators**

- Example: smartNICs (e.g., Azure NIC)
 - Hardware runs (part of) the network stack’s processing

- Other accelerators:
 - GPUs
 - TPUs
 - Matrix computation accelerators in the research realm
Disaggregation of resources

• Typical server: compute cores, memory, storage. Problems:

• Memory wall: not enough bandwidth between compute & mem
• Provisioning for evolution in storage and mem technologies
• Inefficient usage of per-server statically allocated resources
The need for disaggregation

Figure 1: Distribution of relative disk/memory capacity demand to CPU usage for tasks in Google’s datacenter.
Disaggregation

[Network requirements for resource disaggregation, OSDI’16]
Research questions

• Want to build **resource blades**: separate compute, mem, storage
• Can we provide a high bandwidth low latency fabric to interconnect the different components?
• Should communication be reliable? Packet or circuit switched?
• Resource allocation for different applications?
• Application abstractions: move away from VMs?
• How should the new OS look like? Failure models? Abstractions of memory? Storage?