Review of definitions

• **Endpoint or Host:** Machine running user application

• **Packet:** a unit of data transmission (ex: 1500 bytes)

• **Link:** a physical communication channel between two or more machines

• **Router:** A machine that processes packets moving them from one link to another towards a destination

• **Network:** Collection of interconnected machines

• **Address:** a unique name given to a machine (more later)
How do machines talk?
How do machines communicate?

• With 1s and 0s
 • Computers only deal with 1s and 0s
 • So do networks

• How do we transmit 1s and 0s in a network?
Physical transmission on a single link

Physical signaling (light, AC voltages, etc.) are often analog.

Convert bits to signals through modulation of the physical characteristics of signals: encoding.

Convert signals back to digital by decoding physical signals.

Fig. 2-18. (a) A binary signal. (b) Amplitude modulation. (c) Frequency modulation. (d) Phase modulation.
Multi-link networks

• Need a way to move data across links
• We use the term **switching** to denote physically moving data from one link to another
Switching schemes

Host applications transfer data containing many messages.

(1) Circuit Switching

(2) Message Switching

(3) Packet Switching
Circuit switching

• Provides service by setting up the full path of connected links from the origin to the destination

• Example: Telephone network
Circuit switching

1. Setup: Control message sets up a path from origin to destination
2. Return signal informs source that data transmission may proceed
3. Data transmission begins
4. Entire path remains allocated to the transmission (whether used or not)
5. When transmission is complete, source releases the circuit
Circuit switching

Time

Propagation Delay

Resource reservation delay

Call request signal

Call accept signal

Data Transmission Time

Data

Total transfer time

A

B

C

D

Resource reservation delay

Propagation Delay

Data Transmission Time

Call request signal

Call accept signal

Total transfer time

A

B

C

D
Message switching

• Each message is addressed to a destination

• **Header:** metadata that denotes how to process a message
 • Typically includes a destination **address**

• The message “hops” from node to node through a network while allocating only one link at a time
 • Compare to circuit switching: all links reserved at the same time, regardless of use.

• Analogy: Postal service
Message switching

- When the entire message is received at a router, the next step and link in its journey are selected.
- If this selected link is busy, the message waits in a queue until the link becomes free.

Store and forward switching
- Router waits for all message bits to arrive on incoming link before sending the first bit on outgoing link.
- Alternative: cut-through switching sends bits as they arrive.
Message Switching

![Diagram of message switching with time, header, and queueing delay]

- Time
- Total transfer time
- Header
- Queueing Delay

Message

A

B

C

D

13
Packet switching

- Messages are split into smaller pieces called **packets**
 - Packets have a maximum length
 - Packets are numbered and addressed
 - Packets are sent through the network one at a time

- **Pipelining**: different parts of a message concurrently transmitted over different links
 - Provides higher utilization of link resources
Packet switching
The Internet uses store-and-forward packet switching.
Comparisons across switching tech

• Circuit switching incurs an initial delay to set up the path
 • Packet (and message) switching can start transmitting data right away

• Packet switching doesn’t reserve resources for the conversation
 • Circuit switching does. Needs admission control
 • Packet switching makes resource reservation decisions per packet

• Fewer or no guarantees ➔ easier to build
 • Telephone networks are more reliable and harder to build
Comparisons across switching tech

(1) **Total Delay to transfer a message**

 Short Bursty Messages:
 Packet < Circuit

 Long Continuous Messages:
 Circuit < Packet

(2) **Header overhead (what % of bits on the wire is metadata?)**

 Packet > Message

 (assuming typical msgs larger than typical pkts)
CS 352
Measuring Networks

Lecture 2.2
http://www.cs.rutgers.edu/~sn624/352
Srinivas Narayana
Some definitions

• Packet size: length of a packet (bits or bytes), incl. header and data

• **Bandwidth**: For a single link, amount of data it can transmit per unit time (bits/second or Bytes/second or packets/second)

• **Propagation delay**: Time needed to move one bit across (second)
 • Imposed by the communication medium; depends on the link “length”

• **Transmission delay**: Time from first bit@sender to last bit@sender
 • Determined by link bandwidth and packet size

• **Queueing delay**: Time that a packet waits for transmission
 • Determined by contention for the link

• **Total packet delay**: time from first bit@sender to last bit@receiver
 • propagation delay + queueing delay + transmission delay for a single packet
An analogy: Conveyor belt

- Propagation delay = time for first box to travel the length of the belt
- Bandwidth = the number of boxes put on the belt per minute ("rate")
- Suppose we have N boxes in one shipment
- Shipment transmission time = N / rate
 - The next box is put on the belt (1/rate) minutes after the last
- Total transfer time = transmission time + propagation delay
Visualizing the delays

- Transmission delay at the first link
- Propagation delay of first link
- Queueing at the router
- Transmission delay at the second link
- Propagation delay of second link

Increasing time
Bandwidth and delay

• A small demo...
CS 352
Protocols and Layering

Lecture 2.3
http://www.cs.rutgers.edu/~sn624/352
Srinivas Narayana
Protocols: The “rules” of networking

• Protocols consist of two things

• Message format
 • structure of messages exchanged with an endpoint

• Actions
 • operations upon receiving, or not receiving, messages

• Example of a Zoom conversation:
 • Message format: English words and sentences
 • Actions: when a word is heard, say “yes”; when nothing is heard for more than 3 seconds, say “can you hear me?”
The protocols of the Internet

• Standardized by the Internet Engineering Task Force (IETF)
 • through RFCs (“Request For Comments”)

• Layering
The Internet

Rutgers campus network

<table>
<thead>
<tr>
<th>Transport address (port)</th>
<th>Network address (IP address)</th>
<th>Hardware address (MAC address)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex: 64058</td>
<td>Ex: 192.168.1.4</td>
<td>Ex: 00-15-C5-49-04-A9</td>
</tr>
</tbody>
</table>

How do I identify my network interface (device)?

Whose network am I attached to?

With which app is this conversation associated?
The Internet

Google’s network

Application address (URL)
Ex: mail.google.com

Transport address (port)
Ex: 4096

Network address (IP address)
Ex: 10.1.1.104

Hardware address (MAC address)
Ex: 00-15-C5-49-04-A7
Software and hardware for networking are arranged in layers.

Layering provides **modularity**

Each layer has a **distinct function** & interacts with other layers through well-defined **interfaces**.
Modularity through layering

- Apps: useful user-level functions
- Transport: provide guarantees to apps
- Network: best-effort global pkt delivery
- Link: best-effort local pkt delivery

Protocols “stacked” in endpoint and router software/hardware:

HTTP FTP NV TFTP
TCP UDP
Ether ATM ... WiFi
Packet starts as an app “payload”

Packet takes on headers at each layer
Routers do not typically have transport or app functionality (more on this later.)
Layering

• Network communication is very complex

• Layering simplifies understanding, testing, maintaining

• Easy to improve or replace protocol at one layer without affecting others
This course has layers

Application
Transport
Network
Host-to-Net