The Network Layer:
Addressing and Router Design

CS 352, Lecture 12, Spring 2020
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana
Course announcements

- Mid-term grades available
 - 24/7 grading policy: re-grading requests considered in the school-day period between Thu 03/12 at noon until 03/25 noon
 - Average: 74%
 - Note that final mid-term 1 points will be out of 15

- Online instruction: Likely over WebEx
 - One of the TAs to facilitate
 - Call in using a wired connection or phone if possible
 - Some etiquette and aids to make it as effective as possible
Review of concepts

• TCP congestion control: need distributed, efficient, fair
 • TCP AIMD helps achieve fairness and efficiency. How?

• TCP timeout: how to set it?
 • Basic intuition: use measured RTTs to find a tight upper bound
 • Estimate RTT using a exponentially weighted moving average
 • Use variance w.r.t. average to create a safety margin

• Retransmission ambiguity: Karn’s algorithm

• TCP connection management:
 • TCP is full-duplex: independent seq#, windows, data on each side
 • Three-way handshake: SYN, SYN+ACK, ACK
 • TCP state machine: CLOSED → LISTEN → SYN sent/rcvd → EST → …
Review: 2-way handshake failure scenarios

- Choose x
- Retransmit req_conn(x)
- ESTAB
- Client terminates
- Half open connection! (no client!)
- Server forgets x

- Choose x
- Retransmit req_conn(x)
- ESTAB
- Client terminates
- Server forgets x
- Connection x completes

- Choose x
- Retransmit req_conn(x)
- ESTAB
- Accept data(x+1)
- Server forgets x
- Data(x+1) completes

- Choose x
- Retransmit req_conn(x)
- ESTAB
- Accept data(x+1)
- Data(x+1) completes
2-way handshake denial of service

- When server moves into ESTAB state, it:
 - Entry in TCP demultiplexing table
 - Buffer memory for send and recv
 - Code paths to determine sequence numbers, parameters for connection

- Asymmetric work:
 - Client just needs to send a SYN

- Possibility: denial-of-service attack

- TCP standard: client can’t send data in SYN
 - Implication: Server won’t send data in SYN/ACK either
TCP summary

• Reliability
• Ordering
• Flow control
• Congestion control
• Timeout computation
• Connection management

• When you tune in on WebEx, reflect on that…
The Network Layer

Introduction
Where we are: The network layer
Network layer functions

• Move data from sending to receiving endpoint
• on sending endpoint, encapsulates transport segments into datagrams
• on receiving endpoint, deliver datagrams to transport layer
• The network layer also runs in every router!
• The router examines header fields in all network-layer (IP) datagrams passing through it
Two key network-layer functions

- **Forwarding**: move packets from router’s input to appropriate router output

- **Routing**: determine route taken by packets from source to destination
 - routing algorithms

- The network layer solves the routing problem.

Analogy: taking a trip

- **Forwarding**: process of getting through single interchange

- **Routing**: process of planning trip from source to destination
Data plane and Control Plane

Data plane

- local, per-router function
- determines how datagram arriving on router input port is forwarded to router output port
- forwarding function

Control plane

- network-wide logic
- determines how datagram is routed along end-to-end path from source to destination endpoint
- two control-plane approaches:
 - Distributed routing algorithms: implemented in routers
 - Centralized routing: software-defined networking (SDN) implemented on (remote) servers
Internet Protocol: Addressing
We need addresses

• Allow endpoints to talk to each other

• Allow routers to determine how to move a packet

• The primary function of IP addresses is to help implement efficient routing and forwarding
IPv4 Addresses

• 32 bits long
• Identifier for host, router interface
 • Corresponds to the point of attachment
 • Not an identifier for the endpoint
• Notation:
 • Each byte is written in decimal in MSB order, separated by dots
 • Example: 128.195.1.80 stands for the 32-bit IP address

10000000 11000011 00000001 01010000
Types of IPv4 Addresses

• Unicast Address
 • Destination is a single host

• Multicast address
 • Destination is a group of hosts

• Broadcast address
 • 255.255.255.255
 • Destination is all hosts
IPv4 Address Classes (old, “classful”)

<table>
<thead>
<tr>
<th>Class</th>
<th>Net</th>
<th>Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1110</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>1111</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>32 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 Net</td>
</tr>
<tr>
<td>B</td>
<td>10 Net</td>
</tr>
<tr>
<td>C</td>
<td>110 Net</td>
</tr>
<tr>
<td>D</td>
<td>1110 Multicast address</td>
</tr>
<tr>
<td>E</td>
<td>1111 Reserved</td>
</tr>
</tbody>
</table>

Multicast address and Reserved classes are used for broadcasting and special purposes, respectively.
IP Address Classes

- **Class A**:
 - For very large organizations
 - 16 million hosts allowed

- **Class B**:
 - For large organizations
 - 65 thousand hosts allowed

- **Class C**:
 - For small organizations
 - 255 hosts allowed

- **Class D**:
 - Multicast addresses
 - No network/host hierarchy
Key Principle: Use hierarchy to scale

• IP addresses fall into a class, corresponding to a prefix length

• All those IP addresses with the same prefix can take identical paths from a far-away remote endpoint

• This principle reduces the amount of information needed to route packets in the Internet

• We will also see how it enables delegating prefixes from ISPs to their customers
Problems with Class-based Routing

• Too many small networks requiring multiple class C addresses

• Running out of class B addresses, not enough nets in class A

• Addressing strategy must allow for greater diversity of network sizes
Classless IP addressing (CIDR)
IP addressing: CIDR

CIDR: Classless InterDomain Routing
- subnet portion of address of arbitrary length
- address format: \texttt{a.b.c.d/x}, where \(x \) is \# bits in subnet portion of address

\[\begin{array}{c}
\text{11001000 00010111 00010000 00000000} \\
\text{200.23.16.0/23}
\end{array}\]
CIDR

- An ISP can obtain a block of addresses and partition this further to its customers
 - Say an ISP has 200.8.0.0/16 address (65K addresses).
 - It has another customer who needs only 64 addresses starting from 200.8.4.128
 - Then that block can be specified as 200.8.4.128/26

- 200.8.4.128/26 is “inside” 200.8.0.0/16
Subnetting

Example: Class B address with 8-bit subnetting

<table>
<thead>
<tr>
<th>16 bits</th>
<th>8 bits</th>
<th>8 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network id</td>
<td>Subnet id</td>
<td>Host id</td>
</tr>
</tbody>
</table>

Example Address: 165.230 .24 .8
Subnet Masks

Subnet masks allow hosts to determine if another IP address is on the same subnet or the same network.

<table>
<thead>
<tr>
<th>16 bits</th>
<th>8 bits</th>
<th>8 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network id</td>
<td>Subnet id</td>
<td>Host id</td>
</tr>
</tbody>
</table>

Mask: 1111111111111111 1111111 00000000

255.255 .255 .0
Subnet Masks (cont’d)

Assume IP addresses A and B share subnet mask M.

Are IP addresses A and B on the same subnet?

2. Compute logical AND (B & M).
3. If (A & M) == (B & M) then A and B are on the same subnet.

Example: A and B are class B addresses
A = 165.230.82.52
B = 165.230.24.93
M = 255.255.255.0
Example of IP Addressing in a network