Streaming multimedia

CS 352, Lecture 22
http://www.cs.rutgers.edu/~sn624/352-S19

Srinivas Narayana
(heavily adapted from slides by Prof. Badri Nath and the textbook authors)
Multimedia networking

• Many applications on the Internet use audio or video
• IP video traffic will be 82 percent of all IP traffic […] by 2022, up from 75 percent in 2017
• Internet video surveillance traffic will increase sevenfold between 2017 to 2022
• Internet video to TV will increase threefold between 2017 to 2022.
• Consumer Video-on-Demand (VoD) traffic will nearly double by 2022

Source: Cisco visual networking index 2017--22
What’s different about these applications?

• Traditional applications (HTTP(S), SMTP)
 • Delay tolerant but not loss tolerant
 • Data used after transfer complete

• But multimedia applications are often “real time”
 • Data delivery time during transfer has implications

• Video/audio streaming
 • Delay-sensitive

• Real-time audio and video
 • Delays > 400 ms for audio is a bad user experience
 • Somewhat loss tolerant
Digital representation of audio and video
Digital representation of audio

• Must convert analog signal to digital representation

• Sample
 • How many times (twice the max frequency in the signal)

• Quantize
 • How many levels or bits to represent each sample
 • More levels ➔ more accuracy
 • More levels ➔ more bits to store & more bandwidth to transmit

• Compress
 • Compact representation of quantized values
Audio representation

- analog audio signal sampled at constant rate
 - telephone: 8,000 samples/sec
 - CD music: 44,100 samples/sec
- each sample quantized, i.e., rounded
 - e.g., $2^8=256$ possible quantized values
 - each quantized value represented by bits, e.g., 8 bits for 256 values
Audio representation

- example: 8,000 samples/sec, 256 quantized values
- Bandwidth needed: 64,000 bps

- receiver converts bits back to analog signal:
 - some quality reduction

Example rates
- CD: 1.411 Mbps
- MP3: 96, 128, 160 Kbps
- Internet telephony: 5.3 Kbps and up
Video representation

- Video: sequence of images displayed at constant rate
 - e.g., 24 images/sec
- Digital image: array of pixels
 - each pixel represented by bits
- Coding: use redundancy *within* and *between* images to decrease # bits used to encode image
 - spatial (within image)
 - temporal (from one image to next)
- Coding/decoding algorithm often called a codec

Spatial Coding Example: instead of sending N values of same color (all purple), send only two values: color value (*purple*) and number of repeated values (N)

Temporal Coding Example: instead of sending complete frame at $i+1$, send only differences from frame i
Video representation

- **Video bit rate**: effective bits per second of the video after encoding
- **CBR**: (constant bit rate): video encoding rate fixed
- **VBR**: (variable bit rate): video encoding rate changes as amount of spatial, temporal coding changes
- **examples**:
 - MPEG 1 (CD-ROM) 1.5 Mbps
 - MPEG2 (DVD) 3-6 Mbps
 - MPEG4 (often used in Internet, < 1 Mbps)

Spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

Temporal coding example: instead of sending complete frame at $i+1$, send only differences from frame i
Multimedia networking: 3 application types

- **streaming, stored** audio, video
 - **streaming**: can begin playout before downloading entire file
 - **stored (at server)**: can transmit faster than audio/video will be rendered (implies storing/buffering at client)
 - e.g., YouTube, Netflix, Hulu

- **conversational** voice/video over IP
 - interactive nature of human-to-human conversation limits delay tolerance
 - e.g., Skype

- **streaming live** audio, video
 - e.g., live sporting event (futbol)
Streaming video
Streaming stored content

- Media is prerecorded
- Client downloads an initial portion and starts viewing
- Rest downloaded as time progresses
- No need to wait for entire content to be downloaded
- Can change content sites mid-stream based on network conditions
Streaming stored video:

1. video recorded (e.g., 30 frames/sec)
2. video sent
3. video received, played out at client (30 frames/sec)

Cumulative data

streaming: at this time, client playing out early part of video, while server still sending later part of video
Streaming stored video: challenges

- **continuous playout constraint**: once client playout begins, playback must match original timing
 - … but **network delays are variable** (jitter), so will need **client-side buffer** to match playout requirements

- **other challenges**:
 - client interactivity: pause, fast-forward, rewind, jump through video
 - video packets may be lost, retransmitted
Streaming stored video: revisited

- **client-side buffering and playout delay**: compensate for network-added delay, delay jitter
Client-side buffering, playout

variable fill rate, $x(t)$

buffer fill level, $Q(t)$

playout rate, e.g., CBR r

client application buffer, size B
Client-side buffering, playout

1. Initial fill of buffer until playout begins at t_p
2. playout begins at t_p,
3. buffer fill level varies over time as fill rate $x(t)$ varies and playout rate r is constant
Client-side buffering, playout

playout buffering: average fill rate (\overline{x}), playout rate (r):

- $\overline{x} < r$: buffer eventually empties (causing freezing of video playout until buffer again fills)
- $\overline{x} > r$: buffer will not empty, provided initial playout delay is large enough to absorb variability in $x(t)$
 - *initial playout delay tradeoff*: buffer starvation less likely with larger delay, but larger delay until user begins watching
Streaming multimedia: UDP

- server sends at rate appropriate for client
 - often: send rate = encoding rate = constant rate
 - transmission rate can be oblivious to congestion levels
- short playout delay (2-5 seconds) to remove network jitter
- error recovery: application-level, time permitting
- RTP [RFC 2326]: multimedia payload types
- UDP traffic may *not* get through firewalls
Streaming multimedia: HTTP/TCP

- multimedia file retrieved via HTTP GET
- send at maximum possible rate under TCP

- fill rate fluctuates due to TCP congestion control, retransmissions (in-order delivery)
- larger playout delay: smooth TCP delivery rate
- HTTP/TCP passes more easily through firewalls
Streaming multimedia with DASH

• Dynamic Adaptive Streaming over HTTP
• Used by Netflix and other video streaming services
• Client-centric approach to video delivery
 • Adaptive: Client performs video bit rate adaptation
 • Dynamic: Can retrieve a single video from multiple sources
• Retain benefits of existing Internet and end host systems
• Server is standard HTTP server
 • Provides video/audio content in multiple formats and encodings
 • DASH allows the use of CDNs for data delivery
Dynamic Adaptive Streaming over HTTP (DASH)
DASH: Key ideas

- Content **chunks**
- Each chunk can be independently retrieved
- Client-side algorithms to determine and request a varying bit rate for each chunk
 - Goal: ensure good quality of service

Source: Stockhammer MMSys 2011
Media has several periods
Each period has several Adaptation Sets: Audio, video, close caption
Several Representations (ex: codecs, bit rates) per Adaptation set
Several Chunks/Segments per Representation
Dynamic bit rate changing of streams
Media Presentation Descriptor (MPD)

• MPD requested over http
 • Also called “manifest”
• Describes all segments
• Timing information and byte ranges of chunks
• Client uses HTTP GET RANGE from a given AS + representation to ask a given bit rate
• Client could use a different URL for each AS + representation
Video Delivery using CDN

1. HTTP GET request for video URL
2. HTTP reply containing HTML to construct the web page and a link to stream, say FLV file
3. HTTP GET request for FLV stream
4. HTTP reply FLV stream

Internet

Front end web-servers

User

Video-servers (front end)
Server Selection

- File → server mapping done in at least three ways

- Dynamic DNS resolution
 - DNS returns different IP addresses for a given DNS name

- HTTP redirect
 - Use HTTP status code 3xx [with new URL]
 - Web browser does a GET from the new site

- IP anycast
 - Use BGP to announce the same IP address from different locations
 - Client reaches “nearest” location according to inter-domain routing
DASH Summary

• Widely used in video streaming services
• Allows independent requests per segment
 • Hence, independent segment quality and data sizes
 • Encoded through separate HTTP objects and corresponding HTTP byte ranges
 • Combined or separate audio & video streams
• Works well with CDNs
 • Independent representations or chunks can be queried from different locations if needed