Please solve both problems below.

Problem 1. Suppose \(f : \{0, 1\}^n \to \{0, 1\} \) is a function and let \(\mu \) be a distribution over \(\{0, 1\}^n \). We define the **average query complexity** of \(f \) over the distribution \(\mu \) as:

\[
D_\mu(f) := \min_{\text{algorithm } A} \text{average number of queries of } A \text{ to } x,
\]

where each query of \(A \) to \(x \in \{0, 1\}^n \) simply asks for the value of \(x_i \) for a given \(i \); here, the average in the query complexity is taken over the choice of \(x \sim \mu \).

Define \(f^m : (\{0, 1\}^n)^m \to \{0, 1\} \) where

\[
f^m(x^1, \ldots, x^m) = (f(x^1), f(x^2), \ldots, f(x^m)).
\]

The goal of this question is to prove a lower bound for \(D_\mu^m(f^m) \) based on \(D_\mu(f) \), i.e., a direct sum result for average query complexity of \(f \). (\(x^1, \ldots, x^m \sim \mu^m \) is sampled by picking each \(x^i \) independently from \(\mu \).)

Formally, we like to prove that

\[
D_\mu^m(f^m) \geq m \cdot D_\mu(f).
\]

(i) Let \(A \) be any algorithm for \(f^m \) with probability of success \(2/3 \) and average query complexity \(q \) over \(\mu \). Define the following algorithm \(B \) for \(f \) over \(x \sim \mu \):

(a) Sample \(i \in [m] \) uniformly at random and set \(x^i = x \).
(b) Sample \(x^1, \ldots, x^{i-1}, x^{i+1}, \ldots, x^m \) independently from \(\mu \).
(c) *Simulate* running \(A \) over \((x^1, \ldots, x^m) \) and output the same answer that \(A \) outputs for \(x^i \) in \(f^m \).

Show how to do the simulation and implement \(B \) in a way that it achieves a probability of success \(2/3 \) for \(f \) over \(\mu \), while having average query complexity \(q/m \).

(ii) Use part (i) to prove the direct sum result.

Problem 2. Define **Echo** as the following communication problem: Alice gets a single bit \(x \in \{0, 1\} \) and Bob gets no input; the goal for Bob is to output \(x \), i.e., “echo” \(x \). Consider the distribution \(\mu \) which is uniform over \(\{0, 1\} \). Clearly, **Echo** requires 1 bit of communication for \(x \sim \mu \) to success with probability more than half.

(i) Prove that (external) information complexity of **Echo** over the distribution \(\mu \) (with probability of success \(2/3 \)) is also \(\Omega(1) \).

Hint: Use Fano’s inequality.

(ii) Use part (i) plus the direct sum of external information complexity for one-way protocol to prove that information complexity of the Index problem over uniform distribution on \(\{0, 1\}^n \) and \(i \in [n] \) is \(\Omega(n) \).

\(^{1}\)It is easier to work with the average ‘cost’ of the algorithm in this problem compared to the typical worse-case cost. However, one can easily transition between the two by a small cost in query cost and probability of success of the algorithm.