Problem 1. Consider a hypergraph $G = (V, E)$ of rank r s.t. each hyperedge $e = (u_1, \ldots, u_r) \in E$ connects exactly r vertices $u_1, \ldots, u_r \in V$ together (a hypergraph of rank 2 is a simple graph). A hypermatching M in G is a collection of hyperedges that do not share any vertices. In the semi-streaming setting for hypergraphs, we again assume $V := [n]$ and each hyperedge e in E arrives in the stream; we require the algorithm to use space $O(n \cdot \text{polylog}(n))$ as before—note that this space is in particular enough to write down all edges of a hypermatching as its size can only be $O(n/r)$ and each can be represented in $O(r)$ space.

(i) Design a semi-streaming r-approximation algorithm for the problem of finding a maximum cardinality hypermatching.

(ii) Design a semi-streaming $O(r^2)$-approximation algorithm for the problem of finding a maximum weight hypermatching.

(iii) Design a semi-streaming $(1+\varepsilon)r$-approximation algorithm for the problem of finding a maximum weight hypermatching.

Note: If you solved the last part (even if it is an $O(r)$-approximation algorithm) you do not need to solve either of the previous two parts. Also, you may assume that the weights of edges are poly(n)-bounded.