Problem. In Lecture 10, we designed a streaming algorithm for the \(k \)-center clustering problem when points \(p_1, \ldots, p_n \in \{1, \ldots, \Delta\}^d \) are arriving one by one in the stream. For any \(\varepsilon \in (0, 1) \), the algorithm achieves a \((2 + \varepsilon)\)-approximation by storing \(O(k \cdot \log \frac{D}{\varepsilon}) \) points where \(D = \sqrt{d} \cdot \Delta \) is the maximum possible value for the optimum solution. Our goal in this problem is to improve the space complexity of this algorithm at a cost of increasing its approximation ratio by a constant factor.

Design a streaming algorithm for the \(k \)-center clustering problem that achieves an \(O(1) \)-approximation by storing only \(O(k) \) points throughout the stream. Can you reduce the approximation ratio to \((2 + \varepsilon)\)-approximation again by storing only \(O(k/\varepsilon) \) points instead?

Hint: The original approach in the lecture was based on two steps: (i) Designing an \(O(k) \)-space intermediate streaming algorithm that given a parameter \(\tau \in [1, D] \), either outputs a clustering \(C \) with cost at most \(2 \cdot \tau \), or outputs that the optimal solution has cost more than \(\tau \); (ii) then we did a simple geometric search by running the algorithm above for \(O(\log \frac{D}{\varepsilon}) \) choices of \(\tau \in \{1, (1 + \varepsilon), (1 + \varepsilon)^2, \ldots, D\} \) in parallel.

Modify the second step by performing the geometric search \textit{sequentially} by updating the current guess for \(\tau \) on the fly whenever it is smaller than the optimum value.