VOR Base Stations for Indoor 802.11 Positioning

Dragoș Niculescu
dnicules@cs.rutgers.edu
indoor positioning

- no GPS indoors!
- classifications of existing systems
 - infrastructure
 - existing 802.11 base stations
 - specialized beacons
 - measurement medium
 - RF (radio frequency)
 - infrared
 - ultrasound
 - actual positioning method
 - triangulation
 - trilateration
 - signal strength map

Dragoș Niculescu – VOR Base Stations for Indoor 802.11 Positioning
positioning basics

1. range based - trilateration
2. angle based - triangulation
3. signal strength map - nearest neighbor, Bayes
trilateration

\[(x_M - x_A)^2 + (y_M - y_A)^2 = MA^2 \]
\[(x_M - x_B)^2 + (y_M - y_B)^2 = MB^2 \]
\[(x_M - x_C)^2 + (y_M - y_C)^2 = MC^2 \]

solve for \((x_M, y_M) \)

- \(MA, MB, MC \) are affected by errors
- several methods available
example: Cricket (MIT)

○ mobile
 - measures ranges to ceiling beacons
 • TDOA between RF and ultrasound
 - triangulates

○ pros:
 - good accuracy 1.3m

○ cons:
 - extensive infrastructure
 - line of sight to the beacons
triangulation

\[(x_M - x_A) \sin \alpha = (y_M - y_A) \cos \alpha \]
\[(x_M - x_B) \sin \beta = (y_M - y_B) \cos \beta \]
\[(x_M - x_C) \sin \gamma = (y_M - y_C) \cos \gamma \]

solve for \((x_M, y_M)\)

- \(\alpha, \beta, \gamma\) -affected by errors (Gaussian)
- several methods available
build SS map:
 - for each point, measure SS to all 5 BS
query:
 - measure SS to 5 BS \Rightarrow best match in the map
example: RADAR (Microsoft)

- use nearest neighbor to decide for the best match

- **pros:**
 - no additional infrastructure

- **cons:**
 - requires high resolution sampling
 - people, furniture, BS position affect the SS map

- median position error 3m
example: LANDMARC (MSU)

- replaces
 - training points with RFID tags
 - BS with RFID readers

- mobile uses an RFID tag → nearest neighbor, etc.

- pros:
 - **no remapping** → updates map on the fly

- cons:
 - additional infrastructure (RFID)
 - many readers, tags
goals:

- no signal strength map
- less infrastructure
- move complexity to the 802.11 base station

use:

- angles
- ranges
- angles and ranges
VORBA prototype

IR receiver → IR sender
antenna
802.11 card

prototype
directional antenna pattern
basic measurements

- mean SS

signal strength [dBm]

- discrete angles
- angle distribution
- range

$SS(\alpha)$
experiments

- 32 measurement points
- 5 + 2 base stations
- N/E/S/W measurements of 3-4 revolutions each
best peak distribution

- 4.5 peaks on average
- best peak is first/second 90% of the time
other peak distribution

- other peaks point away from true direction

Dragoș Niculescu – VOR Base Stations for Indoor 802.11 Positioning
discrete angle positioning

○ 3.5m median position error
○ 3m if we knew the best peak
triangulation analysis

\[Var[x] > \frac{\sigma^2_a}{\lambda \pi \ln \frac{R}{R_m}} \]

- \(Var[x] \) - standard dev. of positioning error
- \(\lambda \) - density of base stations / \(m^2 \)
- to improve positioning:
 1. decrease measurement error \(\sigma_a \)
 2. use more base stations
quantized angles

- measurements rounded to the nearest 45°
- simulation
little degradation for

- 16 directions (22.5°)
- 8 directions (45°)
angle distribution
range inference

- **open space attenuation:**

 \[SS[\text{dBm}] = SS_0[\text{dBm}] - \log_{10}(\frac{d}{d_0})^n \]

- **\(d(\text{SS})\)**
 - obtained through fitting
 - known to be unreliable

- we obtain it from integration of \(SS(\alpha)\)

- **5-fold cross validation**
 - corridor base stations - waveguide effect
 - median range error 2.8m
positioning w. ranges

- trilateration 5 base stations
- median position error 4.5m

ranges and angles

\[
\begin{align*}
 x_M &= x_A + MA \cos \alpha = x_B + MB \cos \beta = x_C + MC \cos \gamma \\
 y_M &= y_A + MA \sin \alpha = y_B + MB \sin \beta = y_C + MC \sin \gamma
\end{align*}
\]

- one base station is theoretically enough
- \(\alpha, \beta, \gamma, MA, MB, MC \) - affected by errors
position uncertainty

- approximate uncertainty as an ellipse
- error ellipse increases with distance
- $\sigma_a = 0.4$ radians $\simeq 21^\circ$
- $\sigma_r = 0.2r$
how to combine several readings? Kalman filter.
- More base stations ⇒ better positions
- 2.1m median position error (all 7 BS)
discussion

- triangulation with large outliers
- use more than two angles?
- no correlation between
 - angle error and distance
 - angle error and SS
- corridors \Rightarrow waveguides
- revolving signal at the mobile?
- data performance?
VORBA = VOR base station

- complexity into the base station
 - less infrastructure
 - no SS map

- revolving base station measures $SS(\alpha)$ to derive
 - discrete angles
 - angle distributions
 - ranges

- works with quantized angles as well

- can achieve 2.1m - 4m median error
index

○ indoor positioning
○ trilateration
 - Cricket
○ triangulation
○ SS map
 - RADAR
 - LANDMARC
○ VOR Base station
 - prototype
 - basic measurements
 - experiment setup
 - peak distribution
○ angle positioning
 - discrete angles
 - quantized angles
 - angle distributions
○ range positioning
○ range+angle pos.
 - uncertainty
 - performance
○ discussion
○ summary

Dragoș Niculescu – VOR Base Stations for Indoor 802.11 Positioning