Federated
Architectures

Rich Martin
09/07/99

1 (C) 1999 RPMartin

Seminar

e Examining an emerging spectrum of
parallel/distributed machine

® Today's servers consist of many processors,
interconnects, memories tied together in an
ad-hoc manner

® Questions in this class:

® Appropriate applications?
Why bother?
Programming models?

Unified architecture?
Unified OS?

3 (C) 1999 RPMartin

What we'll examine in this
seminar

® Range of scalable servers:
® Symmetric Multiprocessors (SMP)
® Massively Parallel Processors (MPP)
® Database machines
® Fault tolerant machines
® (Clusters
Federated Architecture

e System/programming interfaces

e Applications (two themes)
+ Performance
+ Fault Tolerance

5 (C) 1999 RPMartin

Overview

What this seminar is about
Background

History

Readings, Assignments, project
Break

Scalability

Availability

Managability

2 (C) 1999 RPMartin

How to build Scalable, Available,
Managable servers?

® Technology Trend:
+ Processors are so cheap, can put in anything
+ What does this mean for severs?

® Wide range of machine classes with multiple

levels of processors/memories
® Computers inside computers
* Raids, diagnostic systems, packet filters, etc

e Multiple levels of software
+ Programming difficult

4 (C) 1999 RPMartin

Theme for the class

e Scaling hardware is "easy" for the class of
machines we'll study

® How to program a configuration is an
extremely difficult task

e Q: What's the "right" hardware/software
configuration for a given task?
+ Can system software make this easier?

6 (C) 1999 RPMartin

Background

e \What were all those machines again?
® Symmetric Multiprocessors (SMP)

Massively Parallel Processors (MPP)

Clusters

Database machines

Fault tolerant machines

Federated Architecture

e Extracting similarities/differences

7 (C) 1999 RPMartin

Bigger computers:
Symmetric MultiProcessor

CPU memory

CPU's have equal
access to memory
and I/O devices

hi — 3 —
graphics m Lork

9 (C) 1999 RPMartin

MPP Software

® Nodes often custom design
® CPU/memory commodity
® Network interface full-custom

® Custom p-kernel on nodes

® "Space sharing" machine typical
® One program on a set of nodes at once

® Some coarse timesharing (CM-5)
® |/O nodes execute kernel code only
® Message passing for communication

1 (C) 1999 RPMartin

Model of a
typical computer

CPU Typical interconnect:
$ memory Bus Hierarchy)

Memory Bus
1/0 Bus (PCI)

interconnect

Graphics Bus (AGP)

graphics network

8 (C) 1999 RPMartin

Still bigger:
Massively Parallel Processor

__Scalable Machines scaled
interconnect 5 1000's of nodes

1/0 Nodes

High-Density Nodes

10 (C) 1999 RPMartin

CPU P
’WI cry ’WI

Replicate whole
Computer and OS

interconnect interconnect

fast f;
network network | net?/\%rk
[
]
A
To World
/
Scalable
Interconnect

12 (C) 1999 RPMartin

Database machine
(Teradata DBC)

Computational Networks
(trees)

Access Module Processors Communications Processor

network | network network

‘fcpu I—@Aﬁgﬁ CPU I—@Aﬁgﬁ cPU :;gﬁgﬁ

; memory : memory memory

ﬁ — D > To World

; m : m network || <———

13 (C) 1999 RPMartin

Emerging
Federated Architecture

cPU memory Regular computer
$ on the outside
* 1/0 processors are small computers
- packet filters
~ texture mapping

- disk scheduling
- remote management

IOP mem

etwork

15 (C) 1999 RPMartin

Brief History

I
® Why study history?

+ Evaluate ideas in context of the era.

+ Why are so many ideas recycled?

+ What is the "essence" of an idea?

® Three communities deal with "simultaneous"
programming (EE too!)
+ Parallel programming
+ Distributed system/OS
+ Database

17 (C) 1999 RPMartin

Fault Tolerant Machine
(Tandem Nonstop Il)

Communications Buses |

CPU CPU CPU
— % |memory IOP I memory || [IOP I memory | |IOP I
I | I |

—fak controter]
I/O Bus network
14 (C) 1999 RPMartin

Why it's "Federated"

o Master CPU's and OS control access and
data path

® |/O processors control caching and move the
data through local sub-systems

e Qutside/Inside box becomes more blurred
than in today's machines with unified control
model

16 (C) 1999 RPMartin

Parallel Machines
Late 1980's

® Focus on computation
e Parallel prog. will/must become mainstream

® No consensus on architecture or

programming model
+ Physical machine architecture mirrored
programming model

e Cray-3 going to eat everyone's lunch

18 (C) 1999 RPMartin

Parallel Machines
'80 divergence

® Divergent models and machines
+ Religious wars

Application Software
System Software

Architecture

Vector Shared Memory

19 (C) 1999 RP.Martin

Systolic

Array Dataflow

SIMD

M ge Passing

Parallel Machine
Convergence

Network

® A set of complete computers connected via
a high performance interconnect!

21 (C) 1999 RPMartin

What happend?

® Parallel computing never was mainstream
+ Probably will always be specialized

e Why bother?

¢ More in some dimension (some scaling rule)
+ faster execution for constant problem size
+ bigger data set as we grow machine
+ increased throughput (transactions/hour)
+ more robust execution?
® Add nodes --> less downtime

23 (C) 1999 RPMartin

Parallel Machines
Early 1990's

e
e Cray-3: Built 1. No takers.

e SIMD: Too hard to keep using special VLSI
+ CM2->CM5

e DASH: Demo'ed real shared memory scaling

e Teradata & Tandem not "parallel machines"
+ Not general, only run database apps

® MPP's: King
¢+ CM5, T3D had huge influence

20 (C) 1999 RPMartin

Parallel Machines
Mid 1990's

e MPP's move to chapter 11
+ Thinking Machines, KSR bankrupt
+ Intel closes supercomputing division

¢ Clusters eating their lunch
® Similar enough hardware architecture for 32-100

® Rise of big cc-NUMA SMP's
® scalable to 64-128
® ccNUMA programming more like MPP than SMP

e Clusters Emerging

22 (C) 1999 RPMartin

Parallel Computing
Successes

e Backoffice business apps:
+ SMP's running BIG databases
® Transactions/sec (Visa, Sabre, E*trade,"TPC-C")
® Decision support (Wal-Mart, Amex, "TPC-D")
e Multimedia
+ DSP algorithms are array based
+ Vectors comming back (MMX,VIS)
e "Front end" service applications:
+ Born on clusters (Yahoo/Inktomi/Deja)

24 (C) 1999 RPMartin

Distributed Computing

® Roots in client/server architecture world of
the 1980's
+ ‘"protocols"
® File systems: NFS
® Databases: ODBC
+ Example Operating Systems
® Sprite, Amoeba, Locus, Emerald
e Grapevine
® Fault tolerant systems
+ Tandem
+ lsis, Horus

2% (C) 1999 RP.Martin

Seminar Structure

e 2-3 readings every week
® "Observations" due on reading once a week

® Project at end of the class
+ 8+ page paper on a systems project/experiment
+ |deas due in October
+ Progress checkpoint end of November
+ Final write up due end of the semester

27 (C) 1999 RPMartin

Project

e Substantial systems related project
e Work in small groups (2-3)
° Examples
Parallelize an important application on an
Cluster/SMP/FCA
+ Quantify failure/recovery of certain applications
+ Separate part of OS into independent
sub-system for performance/fault tolerance
+ Develop a solid model for managing clusters

29 (C) 1999 RPMartin

Database Machines

e Relational Database provided a unified
model
+ ‘"everything is a table"

e SQL provided standard language
+ Small set of closed operators
+ Implicit parallelism

e Allows system desiger many ways to exploit
parallelism for performance!

® Not seen as "successful" (Teradata?)

2 (C) 1999 RPMartin

Observations

e 1/2-1 page write up on your thoughts on the
readings for the week.

® Don't just summarize the abstract and
conclusions

® Good themes:

why did the idea succeed/fail?

related ancedotes

alternate method to test the idea

weaknesses in the paper

cross-cutting issues

future work

LR 2R K IR K 4

28 (C) 1999 RPMartin

What you should know before
you take this class

e Senior or grad operating systems
e Strong understanding of 1/O architectures
and how 1/O works in a real machine

° Some parallel programming
H-quiz: What are the following?

DMA

Interrupt

Frame buffer

Socket

Barrier

Spin lock

30 (C) 1999 RPMartin

Where R.U.?

® You're sitting at your desk and have a
window on paul via telnet/rlogin. You type
the letter "A". Describe the steps taken by all
the systems involved in the process from
when you hit the key until the character
shows up on your screen.

® More detall is better (a page or two at most)
® Email to me by next class.

31 (C) 1999 RP.Martin

Scalability

® Newer services require fast growth (hours)
while the service remains available
+ IRS web site April 14th
+ QOctober market crash of '87
+ E*rade crashes

® Must scale down too.

e Short term SMP scalability?
+ "Fork lift" upgrade

3 (C) 1999 RPMartin

Basic Speedup Formula

e Performance is Work/Time
® So speedup of P more units in the machine
over 1 unit is:

JgE
2|38
i

Speadup=

35 (C) 1999 RPMartin

Scalability, Availability,
Manageability

What this seminar is about
Background

History

Readings, Assignments, project
Break

Scalablility

Availability

Manageability

32 (C) 1999 RPMartin

What does scalability
mean?

® Problem Constrained (PS rule)
+ Fixed problem, more resources
® Memory Constrained (MS rule)
+ Add resources -> bigger problem
® Time Constrained (TS rule)
+ E.g. How much can you sort in a minute?
e User defined (pages, ops/sec, etc)
+ E.g. TPC-C/SPEC style scaling rules

® More ops/sec -> constant response time with larger
dataset

3 (C) 1999 RPMartin

Problem Constrained
Scaling

e For a fixed problem size (C) scale the
machine to decrease execution time
e [atency is the implicit metric
+ Was seen as what parallel computing was all
about
+ Very limited view of the world!
+ Example: Time to Sort 100 Million records

_ Work(C),, Timg(1) _Executiontimeg(1
P = TimelP) Wok(C) Execuiontie

36 (C) 1999 RPMartin

Time Constrained Scaling

e Execution time is kept fixed as we scale the
machine
+ QOften useful metric, as we have some maximum
time to wait for an answer
¢ Example: How much can it sort in a minute?

_ Work(P)

Time(t) _ Work(P
SpeeduptC = Time(

Wark(1)” Work(1)

X

37 (C) 1999 RP.Martin

User-Defined Scaling

I
* TPC-C/ SPECweb/SPECsfs style rules

(1) Define Operations/sec
® DB updates/sec
* Web Requests/sec
® NFS reads/writes/attrib checks per second
(2) Define upper limit on response time
+ SPECsfs -> 40 msec
(8) Scaling rule
+ Increase by X operations per second means:
® increase in overall data set
® increase in data operated on

39 (C) 1999 RPMartin

Ideal Scaling

® More demand -> add a resource

Heavier network traffic->add network interfaces
More disk capacity -> add disks

More disk accesses -> add disks

More memory needed -> plug in memory

* 4+ 0

® Should work in the reverse direction too

® Service remains available

a1 (C) 1999 RPMartin

Memory (resource) Constrained
Scaling

® Speedup is determined by addition of
resource as we scale the machine
+ User wants to see speedup as we max the
machine out in some dimension
+ Example:
® Machine holds 1 million records on 1 node

® How fast can we sort 10 million records on 10
nodes?

_Wak{P)
SpeedupmC = Timgp

XTime(l) Increasein Wor
Work(1)” IncreaseinTim

38 (C) 1999 RPMartin

SPECsfs Example

40

ucs vio__| How will the curves

UCB V2.0

sunv1i.0 Change a.S we scale
={ the machine?

35

30

25

20

15

10

Response Time(msec)

- B?seT’(esp.

[, 500 ojvjo} 500

100U 150U
SPEC-SFS Ops/sec

0 (C) 1999 RPMartin

Advantage
of Clusters

® |solation of resources
+ Allows incremental scaling up/down
+ Increased fault isolation => increased
availability?
® Power
® Operating system
® Application error
® (Closer to ideal scaling
+ Easier to size system to load
+ Easier to size up/down
+ Balance of resources

2 (C) 1999 RPMartin

Cluster Disadvantage

® |ack of single image makes management a
nightmare

® Many distributed systems issues
+ Consistency?
+ Naming?
+ Performance?
® Global services hard to come by!
® (Global 0OS?
® (Global Filesystem?
® (Global Storage system?
® Global Networking layer?

3 (C) 1999 RP.Martin

Hardware Errors

e Model sytem with X defects per N units
® Used to be very important
+ LSl-level integration had 100's of chips per
board
+ several boards per computer
® (Chance of error compounded
® Modern systems have much higher levels of
integration
® Design bugs more likely than random errors
® (Can we treat them the same?

45 (C) 1999 RPMartin

Software Errors (cont)

® Defined interfaces are key in dealing with
complexity

System Calls

Vnodes

Streams

Device Drivers

ODBC, NFS, HTTP

® (Can we build software fault tolerant at the
interface level?
+ fault containment
¢ error recovery

a7 (C) 1999 RPMartin

Availabilty

® How do you operate in the presence of
system faults?
® Hardware errors

e Software errors
Firmware
Device drivers
Scheduler

VM system
Network stacks

e QOperator errors

a4 (C) 1999 RPMartin

Software Errors

® Modern systems have millions of lines of
code!
+ Application
+ Compiler
+ Operating System
¢ Device Firmware

® [nterfaces are choke points, much simpler
than the system behind it

e (Can we limit catastrophies by design?

46 (C) 1999 RPMartin

Operator Errors

e Recognized as important, but not addressed
well.
¢ rm-rf* tmp
® vsrm -rf *.tmp
o kill-91
e vskil -9 %1
+ Unplug wrong cable
e A systems issue? User interface issue?
e Can we build systems tolerant to operator
error?

48 (C) 1999 RPMartin

Manageability

e What does it mean to be "manageable”
+ Operator interventions per day/week/month?
+ Human time spent on machine?
+ Support $/hour uptime?

¢ Hard to quantify
¢ Currently more an art than science

e Field is still wide open to research ideas!

49 (C) 1999 RP.Martin

Availability/Manageability tie

e Systems today are brittle, easy to break
+ Can't even upgrade from 10 to 100Mb ethernet
without service interruption
+ Add disk/memory/cpu?
+ Replace disk/memory/cpu?
e Software is worse
+ replace a device driver?
+ Reboot windows after a package install?

51 (C) 1999 RPMartin

Ideal Manageability

e What is the "ideal" manageability?
+ How to add resources?
® identification
® configuration
® integration
+ How to remove resources?
e Maintainance?
+ What happens when something breaks?

¢ Q: How much effort is it to add a new disk to
a system?
e Upgrade a device driver?

50 (C) 1999 RPMartin

How can we get
itall?

e
e Scalability of a cluster
¢ Availability of a Tandem

® Manageability of an SMP

52 (C) 1999 RPMartin

