Network Tomography

CS 552
Richard Martin
What is Network Tomography?

• Derive internal state of the network from:
 – external measurements (probes)
 – Some knowledge about networks
 • Captured in simple models.
Why Perform Network Tomography?

- Can’t always see what’s going in the network!
 - Vs. direct measurement.
- Performance
 - Find bottlenecks, link characteristics
- Diagnosis
 - Find when something is broken/slow.
- Security.
 - How to know someone added a hub/sniffer?
This week’s papers

• J. C. Bolot
 – Finds bottleneck link bandwidth, average packet sizes using simple probes and analysis.

• R. Castro, et al.
 – Overview of Tomography Techniques

• M. Coats et. al.
 – Tries to derive topological structure of the network from probe measurements.
 – Tries to find the “most likely” structure from sets of delay measurements.

• Heidemann et. Al.
 – Recent survey and techniques (as of summer 2008)
Measurement Strategy

• Send stream of UDP packets (probes) to a target at regular intervals (every δ ms)
• Target host echos packets to source
• Size of the packet is constant (32 bytes)
• Vary δ (8, 20, 50, 100, 200, 500 ms)
• Measure Round Trip Time (RTT) of each packet.
Definitions

s_n sending time of probe n
r_n: receiving time of probe n
$rtt_n = r_n - s_n$: probe’s RTT
δ: interval between probe sends

Lost packets: r_n undefined, define $rtt_n = 0$.
Time Series Analysis

Min RTT: 140 ms
Mean RTT: ?
Loss rate: 9%
Classic Time series analysis

• Stochastic analysis
 – View RTT as a function of time (I.e. RTT as F(t))
 – Model fitting
 – Model prediction

• What do we really want from out data?
 – Tomography: learn critical aspects of the network
Phase Plot: Novel Interpretation

View *difference* between RTT’s, not the RTT itself.
Structure of phase plot tells us: bandwidth of bottleneck!
Simple Model

Probes

Traffic

D

FIFO queue

µ

Fixed delay

Variable delay

\[\text{rtt}_n = D + w_n + \frac{p}{\mu} \]

µ: bottleneck router’s service rate
k: buffer size
p: size of the probe packet (bits)
w_n: waiting time for probe packet n

Other Internet traffic
Expectation for light traffic

- What do we expect to see in the phase plot
 - when traffic is light
 - δ is large enough and p small enough not to cause load.

- $w_{n+1} = w_n$
- $rtt_{n+1} = rtt_n$
- For small p, approximate $w_n = 0$
Light Traffic Example

\[n=800 \]
\[\delta=50 \text{ ms} \]

"corner"
\((D,D)\)
\(D = 140 \text{ ms}\)
Heavy load expectation

Probe Traffic $\xrightarrow{D} P_{n+k} | P_{n+1} | P_{n+2}$ Burst $P_n \xrightarrow{\mu}$

FIFO queue

Probe compression effect

$$\text{rtt}_{n+1} = \text{rtt}_n + B/\mu$$

$$\text{rtt}_{n+2} - \text{rtt}_{n+1} = (r_{n+2} - s_{n+2}) - (r_{n+1} - s_{n+1})$$

$$= (r_{n+2} - r_{n+1}) - (s_{n+2} - s_{n+1})$$

$$= p/\mu - \delta$$

Time between compressed probes

Time between probe sends
Heavy load, cont/

- What does the entire burst look like?
 \[\text{rtt}_{n+3} - \text{rtt}_{n+2} = \text{rtt}_{n+k} - \text{rtt}_{n+k-1} = \frac{p}{\mu} - \delta \]

- Rewrite:
 \[\text{rtt}_{n+1} = \text{rtt}_n + \left(\frac{p}{\mu} - \delta \right) \]

- General form:
 \[y = x + \left(\frac{p}{\mu} - \delta \right) \]

Should observe such a line in the phase plot.
Finding the bottleneck

Find intercept. Know p, δ, can compute μ!
Average packet size

• Can use phase data to find the average packet size on the internet.
• Idea: large packets disrupt phase data
 – Disruption from constant stream d, can infer size of the disruption.
 – Use distribution of rtt’s
Average packet size

- Lindley’s Recurrence equation
- Relationship between the waiting time of two successive customers in a queue:

\[w_n: \text{waiting time for customer } n \]
\[y_n: \text{service time for customer } n \]
\[x_n: \text{interarrival time between customers } n, n+1 \]

\[w_{n+1} = \text{prev. packet wait + service - overlap} \]
\[w_{n+1} = w_n + y_n - x_n, \text{ if } w_n + y_n - x_n > 0 \]
Finding the burst size

• Model a slotted time of arrival where slots are defined by probe boundaries
 \[wb_n = \max(w_n + p/\mu, 0) \]

• Apply recurrence:
 \[w_{n+1} = w_n + (p + b_n)/\mu - \delta \]

• Substitute and solve for \(b_n \):
 Note: assume \(w_n + (p + b_n)/\mu - \delta > 0 \), then
 \[b_n = \mu(w_{n+1} - w_n + \delta) - p \]
1st peak \(w_{n+1} - w_n = p/\mu - \delta \)

2nd: \(w_{n+1} = w_n \)

3rd: \(b_n = \mu(w_{n+1} - w_n + \delta) - p \)

know, \(\mu, \delta, p \)

solve for \(b_n \)

distribution of \(w_{n+1} - w_n + \delta, \delta = 20 \text{ ms} \)
Inter-arrival times

- A packet arrived in a slot if:
 \[w_{n+1} - w_n > \frac{p}{\mu} - \delta \]
- Choose a small \(\delta \)
- Avoid false positives
- Count a packet arrival if:
 \[w_{n+1} - w_n > 0 \]
Fraction of arrival slots

Fitted to $p(1-p)^{k-1}$, $p=0.37$
Packet loss

- What is unconditional likelihood of loss?
 - \(\text{ulp} = P(\text{rtt}_n=0) \)

- Given a lost packet, what is conditional likelihood will lose the next one?
 - \(\text{clp} = P(\text{rtt}_{n+1}=0 \mid \text{rtt}_n=0) \)

- Packet loss gap:
 - The number of packets lost in a burst
 - \(\text{plg} = 1/(1-\text{clp}) \)
Loss probabilities

<table>
<thead>
<tr>
<th>δ(ms)</th>
<th>8</th>
<th>20</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>ulp</td>
<td>0.23</td>
<td>0.16</td>
<td>0.1</td>
<td>0.12</td>
<td>0.11</td>
<td>0.09</td>
</tr>
<tr>
<td>clp</td>
<td>0.6</td>
<td>0.42</td>
<td>0.27</td>
<td>0.18</td>
<td>0.18</td>
<td>0.09</td>
</tr>
<tr>
<td>plg</td>
<td>2.5</td>
<td>1.7</td>
<td>1.3</td>
<td>1.2</td>
<td>1.2</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Tomography Overview

- Basic idea
- Methods
- Formal analysis
- Future directions
Traffic Matrix Approaches

- Cast problem of the form:
 - $Y_t = A_xt + e_t$
Traffic Matrix example

- Send multicast packet
- Measure delay of packet at receivers
- Shared paths result in shared delay
- Find the “most likely” tree given the observations
Traffic Matrix Example

Source node

Intermediate routes

Destination nodes
Problem Set-up

\[
\begin{align*}
Y & = \begin{pmatrix}
Y_1 \\
Y_2 \\
Y_3 \\
Y_4
\end{pmatrix} = \begin{pmatrix}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{pmatrix} X \\
& = \begin{pmatrix}
X_1 \\
X_2 \\
\vdots \\
X_7
\end{pmatrix}
\end{align*}
\]

- **Y**: End observed delay
- **A**: Routing matrix
- **X**: Link delays
Introduction

- Performance optimization of high-end applications
- Spatially localized information about network performance
 - Two gathering approaches:
 - Internal: impractical (CPU load, scalability, administration…)
 - External: network tomography
- Cooperative conditions: increasingly uncommon
- Assumption: the routers from the sender to the receiver are fixed during the measurement period
Contributions

• A novel measurement scheme based on special-purpose unicast “sandwich” probes
 – Only delay differences are measured, clock synchronization is not required

• A new, penalized likelihood framework for topology identification
 – A special Markov Chain Monte Carlo (MCMC) procedure that efficiently searches the space of topologies
Sandwich Probe Measurements

- Sandwich: two small packets destined for one receiver separated by a larger packet destined for another receiver

\[d + \gamma_{35} \]

\[d \]
Sandwich Probe Measurements

• Three steps
 – End-to-end measurements are made
 – A set of metrics are estimated based on the measurements
 – Network topology is estimated by an inference algorithm based on the metric
Step 1: Measuring (Pairwise delay measurements)
Step 1: Measuring (Continue)

- Each time a pair of receivers are selected
- Unicast is used to send packets to receivers
- Two small packets are sent to one of the two receivers
- A larger packet separates the two small ones and is sent to the other receiver
- The difference between the starting times of the two small packets should be large enough to make sure that the second one arrives the receiver after the first one
- Cross-traffic has a zero-mean effect on the measurements (d is large enough)
Step 1: Measuring (Continued)

• γ_{35} is resulted from the queuing delay on the shared path
Step 1: Measuring (Continued)

- More shared queues \rightarrow larger $\gamma : \gamma_{34} > \gamma_{35}$
Step 2: Metric Estimation

• More measurements, more reliable the logical topology identification is.

• The choice of metric affects how fast the percentage of successful identification improves as the number of measurements increases.

• Metrics should make every measurement as informative as possible.

• Mean Delay Differences are used as metrics
 – Measured locally
 – No need for global clock synchronization
Step 2: Metric Estimation (Continued)

- The difference between the arrival times of the two small packets at the receiver is related to the bandwidth on the portion of the path shared with the other receiver.
- A metric estimation is generated for each pair of receivers.
Step 2: Metric Estimation (Continued)

- Formalization of end-to-end metric construction
 - N receivers \rightarrow N(N-1) different types of measurements
 - K measurements, independent and identically distributed
 - $\delta(k)$ – difference between arrival times of the 2 small packets in the k^{th} measurement
 - Get the sample mean and sample variance of the measurement for each pair (i,j): $x_{i,j}$ and $\sigma_{i,j}^2$

(Sample mean of sample $X = (X_1, X_2, ...)$ is

$M_n(X) = (X_1 + X_2 + \cdots + X_n) / n$ (arithmetic mean)

Sample variance is

$(1 / n) \sum_{i=1}^{n} (X_i - \mu)^2$

$E(M_n) = \mu$)
Step 3: Topology Estimation

• Assumption: tree-structured graph
• Logical links
• Maximum likelihood criterion:
 – find the true topology tree T^* out of the possible trees (forest) F based on x
• Note: other ways to find trees based on common delay differences (follow references)
• Probability model for delay difference
 – Central Limit Theorem $\Rightarrow x_{i,j} \sim N(\gamma_{i,j}, \sigma_{i,j}/n_{i,j})$
 – $y_{i,j}$ is the theoretical value of $x_{i,j}$
 – That is, sample mean be approximately normally distributed with mean $y_{i,j}$ and variance $s_{i,j}/n_{i,j}$
 – The larger $n_{i,j}$ is, the better the approximation is.
Step 3: Topology Estimation (Cont.)

- Probability density of x is $p(x|T, \mu(T))$, means $\mu(T)$ is computed from the measurements x
- Maximum Likelihood Estimator (MLE) estimates the value of $\mu(T)$ that maximizes $p(x|T, \mu(T))$, that is,
- Log likelihood of T is
 \[L(x|T) \equiv \log p(x|T, \hat{\mu}(T)). \]
- Maximum Likelihood Tree (MLT) T^*
 \[T^* = \arg\max_{T \in F} \log p(x|T, \hat{\mu}(T)) \]
Step 3: Topology Estimation (Cont.)

- Over fitting problem: the more degrees of freedom in a model, the more closely the model can fit the data.
- Penalized likelihood criteria:
 \[L_\lambda(x|\mathcal{T}) = \log p(x|\mathcal{T}, \hat{\mu}(\mathcal{T})) - \lambda n(\mathcal{T}) \]
 - Tradeoff between fitting the data and controlling the number of links in the tree.
- Maximum Penalized Likelihood Tree (MPLT) is
 \[\hat{\mathcal{T}}_\lambda \equiv \max_{\mathcal{T} \in \mathcal{F}} L_\lambda(x|\mathcal{T}) \]
Finding the Tallest Tree in the Forest

• When \(N \) is large, it is infeasible to exhaustively compute the penalized likelihood value of each tree in \(F \).

• A better way is concentrating on a small set of likely trees

\[
\exp(L_\lambda(x|\mathcal{T})) = e^{-\lambda n(\mathcal{T})} p(x | \mathcal{T}, \mu) \propto p(\mathcal{T}, \mu | x)
\]

• Given:

\[
p(\mathcal{T}) \propto \exp(-\lambda n(\mathcal{T}))
\]

• Posterior density

\[
p(\mathcal{T}, \mu | x) = p(\mathcal{T}) \times p(x | \mathcal{T}, \mu)
\]

can be used as a guide for searching \(F \).

• Posterior density is peaked near highly likely trees, so stochastic search focuses the exploration
Stochastic Search Methodology

• Reversible Jump Markov Chain Monte Carlo
 – Target distribution: \(p(T, \mu \mid x) \)
 – Basic idea: simulate an ergodic markov chain whose samples are asymptotically distributed according to the target distribution
 – Transition kernel: transition probability from one state to another
 – Moves: birth step, death step and \(\mu \)-step
Birth Step

- A new node \(l^* \) is added → extra parameter \(\mu_{l^*} \)
- The dimension of the model is increased
- Transformation (non-deterministic)

\[
\mu_{l^*} = r \times \min(\mu_c(l,1), \mu_c(l,2))
\]
\[
\mu'_{c}(l,1) = \mu_c(l,1) - \mu_{l^*}
\]
\[
\mu'_{c}(l,2) = \mu_c(l,2) - \mu_{l^*}
\]
Death Step

- A node l^* is deleted
- The dimension of the model is reduced by 1
- Transformation (deterministic)
 \[
 \mu_c(l,1) = \mu'_c(l,1) + \mu^*_l
 \]
 \[
 \mu_c(l,2) = \mu'_c(l,2) + \mu^*_l
 \]
Choose a link l and change the value of μ_l
New value of μ_l is drawn from the conditional posterior distribution
The Algorithm

- Choose a starting state s_0
- Propose a move to another state s_1
 - Probability =
 $$\min \left\{ 1, \frac{p(T_1, \mu_1 | x)q(s_0 | s_1)}{p(T_0, \mu_0 | x)q(s_1 | s_0)} \times J_f(s_1, s_0) \right\}$$
- Repeat these two steps and evaluate the log-likelihood of each encountered tree
- Why restart?
Penalty parameter

- Penalty = $1/2 \log_2 N$
- N: number of receivers
Simulation Experiments

- Compare the performance of DBT (Deterministic Binary Tree) and MPLT.
- Penalty = 0 (both will produce binary trees).
- 50 probes for each pair in one experiment, 1000 independent experiments.
- When the variability of the delay difference measurements differ on different links, MPLT performs better than DBT.
- Maximum Likelihood criteria can provide significantly better identification results than DBT.
ns Experiment

- Topology used for the experiment
Experiment Results
Internet Experiment

- Source host: data collection and inference
- Receivers: a low overhead receiver task
- 8 minutes/experiment, 6 independent experiments
- 1 sandwich probe / 50ms
- Penalty = 1.7
- topology
Experiment Result

- Estimated topology
Conclusions and Future work

• Conclusions:
 – Delay-based measurement without the need for synchronization
 – MCMC algorithm to explore forest and identify maximum (penalized) likelihood tree
 – Foundation for multi-sender topology identification
 – Localization of layer-two elements

• Future work
 – Adaptive methods for selecting penalty parameter
 – Adaptivity in the probing scheme
Extra Credit

• Log into planetLab nodes
 – Use SSH with class-provided key

• Pick a set of hosts to perform the experiment
 – A set of 2 given hosts posted for the class
 • You pick 3 more:
 – East Asia -> North America
 – North America -> Europe
 – Europe -> East Asia

• Generate & record a 1 minute ping sequence with different δ (6 in all)
 • 1, 5, 15, 50, 100, 200 ms
Extra Credit (cont)

• For each trace (30 in all):
 – Plot the phase plot
 – Find the equation of the line \(y = x + \frac{p}{\mu} - \delta \)
 – Plot the distribution plot
 – Find the first three peaks; find \(b_n \)

• For a set of traces between 2 hosts:
 – Provide the table of ulp, clp, plg
Extra Credit (cont)

• What to hand in:
 – Short paragraph describing the experiment, and problems you had
 – Phase plots + equations
 – Distribution plots + positions of peaks, Bn
 – Probability table
 – Label plots with source, destination host names, time of experiment, length of experiment