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Wireless Explosion

• Technology trends creating cheap wireless communication in
every computing device

• Radio offers localization opportunity in 2D and 3D
– New capability compared to traditional communication networks

• 3 technology communities:

– WLAN (802.11x)

– Sensor networks (802.15)

– Cell carriers(3G)



• General purpose localization analogous to general purpose
communication!

• Work on any device with little/no modification
• Supports vast range of performance
• Will drive new applications

• Challenge: Can we localize all device radios using only the
communication infrastructure?
– How much existing infrastructure can we leverage?

• 1st Application: Search
– General purpose communication needed for global search
– Can we make finding objects in the physical space as easy as
Google ?

Challenge and Opportunity



Vision to reality

• Getting closer …
This talk:
• Localize with only existing infrastructure

– Signal strength-> available on almost all radios
• Ad-hoc

– No more labeled data (our contribution)
• Adding additional infrastructure

– Directional Antennas



Radio-based Localization

• Signal decays linearly with log distance
in laboratory and line of sight settings

– Use trilateration to compute (x,y) »
Problem solved
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RSS to distance: Outdoor 802.11



RSS to Distance -- Telos Mote Outdoor



Indoor Localization

• Reality is Bad
– Noise (could average out)

• Worse ..
– Multi-path
– Reflections
– Attenuation
Systematic bias



RSS to Distance --- Indoor 802.11



Machine Learning Motivation

• Data generally follows model
– E.g. 0-50 ft, follows model closely

• Can we use machine learning to
automatically obtain signal parameters?

• Identify/ignore noise?
• Match bias to particular regions?



Supervised Learning-based Systems

• Training

• Offline phase
– Collect “labeled” training
data [(X,Y), S1,S2,S3,..]

• Online phase
– Match “unlabeled” RSS
– [(?,?), S1,S2,S3,..] to
existing “labeled” training
fingerprints

[-80,-67,-50]

Fingerprint of RSS
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Previous ML Work

• People have tried almost all existing supervised learning
approaches
– Well known RADAR (nearest neighbor)
– Probabilistic, e.g., Bayes a posteriori likelihood
– Support Vector Machines
– Multi-layer Perceptrons
– …
[Bahl00, Battiti02, Roos02,Youssef03, Krishnan04,…]

• All have a major drawback
– Labeled training fingerprints: “profiling”
– Labor intensive (286 points in 32 hrs => 6.7 min/point)
– Need to be repeated over the time



Contribution

Used Bayesian Graphical Models (BGM):
– Performance-wise: comparable
– Minimum labeled fingerprints
– Adaptive
– Simultaneously locate a set of objects

• Advantage: zero-profiling
– No more “labeled” training data needed
– Unlabeled data can be obtained using existing data traffic



Outline

• Motivations and Goals
• Bayesian background
• Prior Work

– Distance-based Bayesian Models
• M1, M2, M3

• Angle & Distance model: A1
• Conclusions and Future Work



Bayesian Graphical Models

• Encode dependencies/conditional independence
between variables

X Y

D

S

Vertices = random variables
Edges = relationships

Example [(X,Y), S], AP at (xb, yb)
Log-based signal strength propagation
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Model 1 (Simple): labeled data

Xi Yi

D1

S1

b11b01 b15

D2 D3 D4 D5

S2 S3 S4 S5

b12 b13 b14b02 b03 b04 b05

Position Variables

Distances

Observed Signal Strengths

Base Station Propagation
constants (unknown)

Xi ~ uniform(0, Length) Yi ~ uniform(0, Width)
i=1,2,3,4,5 : Si ~ N(b0i+b1ilog(Di),δi),

b0i ~ N(0,1000), b1i ~ N(0,1000)



Input

Labeled: training
[(x1,y1),(-40,-55,-90,..)]
[(x2,y2),(-60,-56,-80,..)]
[(x3,y3),(-80,-70,-30,..)]
[(x4,y4),(-64,-33,-70,..)]

Unlabeled: mobile object(s)
[(?,?),(-45,-65,-40,..)]
[(?,?),(-35,-45,-78,..)]
[(?,?),(-75,-55,-65,..)]

• Probability distributions for all the
unknown variables

• Propagation constants
– b0i, b1i for each Base Station

• (x,y) for each mobile (?,?)

Output



Solving for the Variables

• Closed form solution doesn’t usually exist
» simulation/analytic approx

• We used MCMC simulation (Markov Chain
Monte Carlo) to generate predictive samples
from the joint distribution for every unknown
(X,Y) location



Example Output



Performance results
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Model 2 (Hierarchical): labeled data

• Intuition:
– Same hardware should
generate same signal
propagation constants

– Systematic bias in different
environments (e.g. a closet)

Xi Yi

D1 D2 D3 D4 D5

S1 S2 S3 S4 S5

b11 b12 b13 b14 b15b01 b02 b03 b04 b05

Allowing any signal propagation constants too
constrained!

Assume all base-stations parameters
normally distributed around a hidden
variable with a mean and variance



M2 similar to M1, but better with very small training sets
Both comparable to SmoothNN

M1, M2, SmoothNN Comparison
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• Challenge: Position estimates without labeled data

• Observe signal strengths from existing data packets
(unlabeled by default)

• No more running around collecting data..
• Over and over.. and over..

No Labels



Input

Labeled: training
[(x1,y1),(-40,-55,-90,..)]
[(x2,y2),(-60,-56,-80,..)]
[(x3,y3),(-80,-70,-30,..)]
[(x4,y4),(-64,-33,-70,..)]

Unlabeled: mobile object(s)
[(?,?),(-45,-65,-40,..)]
[(?,?),(-35,-45,-78,..)]
[(?,?),(-75,-55,-65,..)]

• Probability distributions for
all the unknowns

• Propagation constants
– b0i, b1i for each Base Station

• (x,y) for each (?,?)

Output



Model 3 (Zero Profiling)

• Same graph as M2 (Hierarchical)
but with (unlabeled data)

Xi Yi

D1 D2 D3 D4 D5

S1 S2 S3 S4 S5

b11 b12 b13 b14 b15b01 b02 b03 b04 b05

Why this works:
[1] Prior knowledge about distance-signal strength

[2] Prior knowledge that access points behave similarly



Results Close to SmoothNN
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Comparison to previous work
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•More ad-hoc

•Adaptive

•No labor investment



Outline

• Motivations and Goals
• Experimental setup
• Bayesian background
• Distance-based Bayesian Models:

– M1, M2, M3
– Comparison to previous RSS work

• Angle & Distance model: A1
• Conclusions and Future Work



Augmenting the Base Station

19 dB antenna

Motor

Motor Controller

Laptop
Base station

Pigtail

Tripod



Outdoor AoA Curve



Angle of Arrival Model (A1)

• Use a directional Antenna at
the Base station

Ai is the angle of the directional
Antenna i S2

D2

YiXi

A2

S1

D1
A1

S3

D3
A3

10 110

11 11

20 220

21 21

30 330

31 31

Si is the signal strength given
the distance and angle



Text representation of Si

Si[j]~N((i0 i1log(Di))cos(3
(ai [j] ))( i2 i1Di),i)

Log-Linear
Signal-to-Distance
(baseline)

Scaling by Angle
(% of peak)

Scaling by Distance
(vertical width)

j = angle quantization
(e.g. every 10 deg)



Experimental Set Up
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point



A1 accuracy CDF compared to M1

Tiny improvement (3ft)



Finding the discrepancy

• Additional angle information provided tiny
benefit to localization!

• Origins of performance?
• Strategy:

– Characterize errors
– Forward method:

• Add errors to synthetic data
– Backward method:

• Subtract errors from measured curves
– Observe accuracy as function of errors



Types of Errors in AoA curve

• Angle error
– Distance of AoA peak from the true angle

• Distance Error
– Difference in predicted RSS-to-distance of curve
average

• Lobe error
– Percentage height of side lobe to the peak lobe



Example Errors

Side Lobe

Angle error

Distance
error



Angle Error Histogram



Distance Error Histogram



Sensitivity to Errors

• Synthetic: Perturb cosine curves
– Add random shift in angle
– Add random shift up/down to whole curve
– Add 2 side lobes of % peak at random points

• Corrected: Subtract errors from measured
curves
– Shift as a % of there error toward the true angle
– Correct whole height as a % toward true average
– Smooth curve by averaging each point over a
window (in degrees)



A1 accuracy on synthetic set



A1 accuracy on corrected set



A1: Summary

• Too sensitive to distance errors
– Distance error dominate angle errors

• Future work:
– Weight distance vs. angle?
– Throw away distance information?
– Sensitivity to base station placement?

• Need a center base station?



Conclusions and Open Issues

• First to use BGM
• Considerable promise for localization
• Performance comparable to existing approaches
• Zero profiling!

– Can we localize anything with a radio? How well?
• Can we scale the infrastructure?

– Directional Antennas
– High frequency clock
– Cross traffic



Future Work using Bayesian Models

• Discount RSS to distance information in A1
• Indoor 802.15.4
• Variational approximations

– No more sampling to solve variables
• Tracking
• Additional infrastructure

– Time of Arrival (high frequency clocks)
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Experimental Setup

• 3 Office buildings
– BR, CA Up, CA Down

• 802.11b

• Different sessions, days

• All give similar performance

• Use BR as example

BR: 5 access points, 225 ft x 175 ft, 254 measurements



Corridor Effects

• Observation: RSS is stronger
along corridors

• Add this to the M2

Variable c =1 if the point shares x
or y with the AP

No improvements

Informative Prior
distributions
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