Computer Ecology: Responding to Mobile Worms with Location -Based Quarantine Boundaries

Baik Hoh (baikhoh@winlab)
Marco Gruteser (gruteser@winlab)

Pest Quar antine Are a Map in A ustralia

Mobile Worm, 'Cabir’

- A Cabir outbreak at the packed ad hoc network, Helsinki Olympic Stadium (300 nodes in 50 m -by-50m)
- Characteristics:
- Multi-radio support \rightarrow direct local interactio \underline{n} (e.g., Bluetooth) \rightarrow Alternative propagatio n path of worms/virus
- Mobility (V): traffic pattern related
- Limited connectivity (Cr): geographical prox imity (within $10 \mathrm{~m} \approx 30$ feet)

Wired Intrusion Detection

- Conventional scheme [4, 5]
- Prevention, Treatment and Containment
- Containment technique is characterized by
- Reaction time (How fast?)
- Detection method (anomaly / signature-based)
- Strategy (address blacklisting / content filtering)
- Deployment scenario (placing containment syst ems)

Wireless Intrusion Detection

- Simple example[3] (in wireless network)
- Resource constrained: mobile nodes instea d of routers, gateways or firewalls
- Cooperation needed (mobile devices or ho neypot devices) \rightarrow delay
- Human analysis needed due to a high false alarm probability \rightarrow delay
- We don't have any practical ad hoc networ k example nor IDS

$$
\Delta T=T_{A}-T_{0}
$$

- There exists a time delay between outbr eak to alarm. The reasons are:
- Distributed processing delays
- Communication processing delays
- Human analysis
- Effects of ΔT
- During this time, malware can spread furthe $r \rightarrow$ imperfect containment

Assumptions

- Patient 0: the analyst can accurately loc ate the patient 0
- T_{0} : time of outbreak
- Location server (infrastructure): service provider can locate each mobile node.
- How about inaccurate T_{0} and patient 0 ?
\rightarrow more robust algorithm needed!!

Wireless Intrusion response archit ecture

- Possible responses given Open Mobile Allianc e Client Provisioning Architecture
- sends a warning
- turns off the compromised nodes
- disables local interaction
- installs patches
- installs port or content-based filters
- Intrusion response planning problem
- Def: identifying an optimal set of infected nodes
- Requires a quarantine boundary

A Macroscopic Models of Worm Propagation from Ecology

- Spread of muskrats in Europ e (1905)
- Dispersal was modeled by di ffusion model (Skellam,195 1)
- Hostile barrier might be need ed to halt the spread of mus krats
- Estimating quarantine boundary in mobile wor m is an analogous problem
- Toxic pollutants in under groundwater
- Advection term (explaining the mean flow) is adde d to diffusion-reaction equation

Cont. (PDE)

- Diffusion-reaction equation

$$
\begin{gather*}
\frac{\partial S}{\partial t}=\frac{D}{r} \frac{\partial}{\partial r}\left(r \frac{\partial S}{\partial r}\right)+\alpha S \tag{1}\\
S=(m / 4 \pi D t) \exp \left(\alpha t-r^{2} / 4 D t\right) \tag{2}\\
R=2 \sqrt{\pi \alpha D} t \tag{3}
\end{gather*}
$$

- Advection equation only

$$
\begin{equation*}
\frac{\partial S}{\partial t}=-\frac{\partial}{\partial x}(u S)-\frac{\partial}{\partial y}(v S)+\alpha S \tag{4}
\end{equation*}
$$

Quarantine boundary estimation

- Propagation speed (v'):
- Isotropic circle ($\mathrm{R}=\mathrm{v}^{\prime}$ * $\Delta \mathrm{T}$)
- Rectangle ($L=v^{\prime} * \Delta T$)
- Question) How to estimate ' v ' '?
- Answer)
- Pedestrian scenarios: empirically simulation -based approach
- Vehicular scenarios: simple analytic eq.

Preliminary example: Estimating Diffusion in Random Walk Model

- Boundary estimation (r) and response

- What if the infected nodes move with the mea n flow (=advection)?

Algorithm: Propagation speed est imation

(b) Traffic jam

$$
V^{\prime}= \begin{cases}V+n R\left\lfloor\frac{C_{r}}{R}\right\rfloor & \text { if } R \leq C_{r} \\ V & \text { else }\end{cases}
$$

Algorithm: Spatial Boundary

- $\mathrm{V}^{\prime}=\alpha * \mathrm{n} * \mathrm{Cr}+\mathrm{V}$ (α is a constant $)$
- A traversal of the road network graph

VANET (1st step: map extraction)

- Southern New Jersey Highway Network

VANET (2nd step: Road classifica tion)

- Inter-State highway (e.g., NJ-Turnpike)
- It has fewer entries and exits
- Advection only
- State highway (e.g., Route 18, Route 1, 287)
- It has many entries and exits on local roads while It has mean flows
- Advection-diffusion
- Local roads network
- It can be modeled by 2D-random walk, thus diffu sion only

VANET (3rd step: polygon merge)

- Build an advection model
- Using traversal of the road network graph and a pr opagation speed estimation
- Rectangular quarantine boundary
- width: the number of lanes on each road
- length: the frontal wave of propagation
- Merge rectangles into polygon
- Implementation by 'Polybool' function in MATLAB
- Check nodes within polygon
- By using ‘Point in Polygon’ algorithm

Evaluation

- Measures
- Detection probability (Pd)
- False alarm probability (Pf)
- Jaccard similarity

$$
J=\frac{2(|X \cap Y|)}{|X|+|Y|}=\frac{2 P_{d}\left(1-P_{f}\right)}{1+P_{d}-P_{f}}
$$

- Target scenarios
- A vehicular ad hoc network (VANET)
- Ex. Southern New Jersey Highway Networks

Cont.

- Simulation model
- SIR model (infection probability=1)
- Randomly chosen initially infected nodes o n the link between J3 and J4
- Time delay ($25 \mathrm{sec} \sim 45 \mathrm{sec}$)
- Communication range (50m, 100m and 200 m)
- Vehicular scenario
- PARAMICS \rightarrow Calibrated from real traffic data
- Southern New Jersey Highway network
- x, y position was recorded at every 0.5 sec

Results (VANET)

- Baselines to compare
- Diffusion-reaction model (A)
- Advection model
- With having same propagation speed on all roa ds (B.1)
- With having different estimated propagation spe eds on all roads from empirical method (B.2)
- With having different estimated propagation spe eds on all roads from analytical model (B.3)

Cont. (Detection Prob.)

Cont. (False-alarm Prob.)

Discussion

- Imperfect containment:
- But 95\% detection probability can slow the propagation of a worm
- It yields additional analysis time for patch
- It can act as a short-term defense
- For the optimum Jaccard similarity:
- We choose a smaller radius than R
- Repeated application of intrusion respo nse

Imperfect containment

Discussion (Ecology and Worms)

- Allee effect
- Def) reduced per capita reproduction when animals are scarce
- Useful for describing the dynamic change of the infection rate
- Two competing species (Predator-Prey model) propagation
- Useful for competition or cooperation of m alicious codes

Other Related Work

- 1. Khayam and Radha (MSU)
- Infection rate of active worms over time in VANET
- 2. Wu and Fujimoto (Gatech)
- Information propagation speed in VANET
- 3. Zhang and Lee (Gatech)
- Intrusion detection for wireless ad hoc network
- 4. Moore and colleagues (CAIDA)
- The existing containment methods for Internet
- 5. Vern Paxson (ICIR)
- Modeling malware via PDE from epidemiology

Conclusion

- We proposed an architecture for a servi ce provider
- In hybrid ad hoc network (with wide-area in frastructure network)
- Location-based quarantine boundary estim ation techniques (diffusion \& advection)
- The results on application of algorithms to r eal road networks

Further works and comments

- Analytic approach for estimating v' in pedestri an scenarios and α in VANET
- State wide area simulation (NJ-Turnpike)
- Design of robust algorithm to inaccurate patie nt 0 and time of outbreak.
- Estimation of the propagation speed from intr usion reports
- Maintaining partial outages of the wide-area wireless network after intrusion response

