Computer Ecology: Responding to Mobile Worms with Location -Based Quarantine Boundaries

> Baik Hoh (baikhoh@winlab) Marco Gruteser (gruteser@winlab)

Pest Quar antine Are a Map in A ustralia

Mobile Worm, 'Cabir'

- A Cabir outbreak at the packed ad hoc network, Helsinki Olympic Stadium (300 nodes in 50m-by-50m)
- Characteristics:
 - Multi-radio support → <u>direct local interactio</u>
 <u>n</u> (e.g., Bluetooth) → Alternative propagatio
 n path of worms/virus
 - Mobility (V): traffic pattern related
 - Limited connectivity (Cr): geographical prox imity (within 10m≈30feet)

Wired Intrusion Detection

- Conventional scheme [4, 5]
 - Prevention, Treatment and Containment
 - Containment technique is characterized by
 - Reaction time (How fast?)
 - Detection method (anomaly / signature-based)
 - Strategy (address blacklisting / content filtering)
 - Deployment scenario (placing containment syst ems)

Wireless Intrusion Detection

- Simple example[3] (in wireless network)
 - Resource constrained: mobile nodes instea
 d of routers, gateways or firewalls
 - Cooperation needed (mobile devices or ho neypot devices) → delay
 - Human analysis needed due to a high false alarm probability → delay
 - We don't have any practical ad hoc networ k example nor IDS

$\Delta T = T_A - T_O$

- There exists a time delay between outbr eak to alarm. The reasons are:
 - Distributed processing delays
 - Communication processing delays
 - Human analysis
- Effects of ΔT
 - During this time, malware can spread furthe
 r → imperfect containment

Assumptions

- Patient 0: the analyst can accurately loc ate the patient 0
- T_o: time of outbreak
- Location server (infrastructure): service provider can locate each mobile node.
- How about inaccurate T_o and patient 0?
 → more robust algorithm needed!!

Wireless Intrusion response archit ecture

- Possible responses given Open Mobile Allianc e Client Provisioning Architecture
 - sends a warning
 - turns off the compromised nodes
 - disables local interaction
 - installs patches
 - installs port or content-based filters
- Intrusion response planning problem
 - Def: identifying an optimal set of infected nodes
 - Requires a quarantine boundary

A Macroscopic Models of Worm Propagation from Ecology

- Spread of muskrats in Europ e (1905)
- Dispersal was modeled by di ffusion model (Skellam, 195 1)
- Hostile barrier might be need ed to halt the spread of mus krats

- Estimating quarantine boundary in mobile wor m is an analogous problem
- Toxic pollutants in under groundwater
 - Advection term (explaining the mean flow) is adde d to diffusion-reaction equation

Cont. (PDE)

• Diffusion-reaction equation

$$\frac{\partial S}{\partial t} = \frac{D}{r} \frac{\partial}{\partial r} \left(r \frac{\partial S}{\partial r} \right) + \alpha S \tag{1}$$

$$S = (m/4\pi Dt) \exp(\alpha t - r^2/4Dt)$$
 (2)

$$R = 2\sqrt{\pi\alpha D}t \tag{3}$$

Advection equation only

$$\frac{\partial S}{\partial t} = -\frac{\partial}{\partial x} \left(uS \right) - \frac{\partial}{\partial y} \left(vS \right) + \alpha S \tag{4}$$

Quarantine boundary estimation

- Propagation speed (v'):
 - Isotropic circle ($R = v' * \Delta T$)
 - Rectangle (L = v' $\star \Delta T$)
- Question) How to estimate 'v' '?
- Answer)
 - Pedestrian scenarios: empirically simulation
 based approach
 - Vehicular scenarios: simple analytic eq.

Preliminary example: Estimating Diffusion in Random Walk Model

• Boundary estimation (r) and response

• What if the infected nodes move with the mea n flow (=advection)?

Algorithm: Propagation speed est imation

Algorithm: Spatial Boundary

- V' = $\alpha * n * Cr + V$ (α is a constant)
- A traversal of the road network graph

VANET (1st step: map extraction)

• Southern New Jersey Highway Network

VANET (2nd step: Road classifica tion)

- Inter-State highway (e.g., NJ-Turnpike)
 - It has fewer entries and exits
 - Advection only
- State highway (e.g., Route 18, Route 1, 287)
 - It has many entries and exits on local roads while It has mean flows
 - Advection-diffusion
- Local roads network
 - It can be modeled by 2D-random walk, thus diffu sion only

VANET (3rd step: polygon merge)

- Build an advection model
 - Using traversal of the road network graph and a pr opagation speed estimation
- Rectangular quarantine boundary
 - width: the number of lanes on each road
 - length: the frontal wave of propagation
- Merge rectangles into polygon
 - Implementation by 'Polybool' function in MATLAB
- Check nodes within polygon
 - By using 'Point in Polygon' algorithm

Evaluation

- Measures
 - Detection probability (Pd)
 - False alarm probability (Pf)
 - Jaccard similarity

$$J = \frac{2\left(|X \cap Y|\right)}{|X| + |Y|} = \frac{2P_d(1 - P_f)}{1 + P_d - P_f}$$

- Target scenarios
 - A vehicular ad hoc network (VANET)
 - Ex. Southern New Jersey Highway Networks

Cont.

- Simulation model
 - SIR model (infection probability=1)
 - Randomly chosen initially infected nodes on the link between J3 and J4
 - Time delay (25 sec \sim 45 sec)
 - Communication range (50m, <u>100m</u> and 200 m)
 - Vehicular scenario
 - PARAMICS \rightarrow Calibrated from real traffic data
 - Southern New Jersey Highway network
 - x, y position was recorded at every 0.5 sec

Results (VANET)

- Baselines to compare
 - Diffusion-reaction model (A)
 - Advection model
 - With having same propagation speed on all roa ds (B.1)
 - With having different estimated propagation spe eds on all roads from empirical method (B.2)
 - With having different estimated propagation spe eds on all roads from analytical model (B.3)

Cont. (Detection Prob.)

Cont. (False-alarm Prob.)

Discussion

- Imperfect containment:
 - But 95% detection probability can slow the propagation of a worm
 - It yields additional analysis time for patch
 - It can act as a short-term defense
- For the optimum Jaccard similarity:
 We choose a smaller radius than R
- Repeated application of intrusion response

Discussion (Ecology and Worms)

- Allee effect
 - Def) reduced per capita reproduction when animals are scarce
 - Useful for describing the dynamic change of the infection rate
- Two competing species (Predator-Prey model) propagation
 - Useful for competition or cooperation of m alicious codes

Other Related Work

- 1. Khayam and Radha (MSU)
 - Infection rate of active worms over time in VANET
- 2. Wu and Fujimoto (Gatech)
 - Information propagation speed in VANET
- 3. Zhang and Lee (Gatech)
 - Intrusion detection for wireless ad hoc network
- 4. Moore and colleagues (CAIDA)
 - The existing containment methods for Internet
- 5. Vern Paxson (ICIR)
 - Modeling malware via PDE from epidemiology

Conclusion

- We proposed an architecture for a servi ce provider
 - In hybrid ad hoc network (with wide-area in frastructure network)
 - Location-based quarantine boundary estim ation techniques (diffusion & advection)
 - The results on application of algorithms to r eal road networks

Further works and comments

- Analytic approach for estimating v' in pedestri an scenarios and α in VANET
- State wide area simulation (NJ-Turnpike)
- Design of robust algorithm to inaccurate patie nt 0 and time of outbreak.
- Estimation of the propagation speed from intrusion reports
- Maintaining partial outages of the wide-area wireless network after intrusion response