Routing Paradigms

CS 552
Richard P. Martin
Today’s lecture

• Overview of Routing Paradigms
• Original Internet Paper
• Switching (SS7)
• Geometric Routing (TBF)
• Publish/Subscribe (Diffusion)
3 Addressing Strategies

• Where to send data?
 – To a specific computation in the network?
 – To a physical place or along a physical path?
 – To any process “matching” the data?
3 Addressing Paradigms

• What does the network’s address space describe?
• Computations in the computer network
 • E.g: process at 128.6.4.4, port 80
• 2D and 3D Space
 – Geometric/position centric routing
 – Line segment, 45° W, 180° N, North, 3Km
• Data
 – Publish/subscribe and diffusion based routing
 – E.g., all nodes wanting data matching /CS552.*/
Addressing & Routing

- Routing layer not necessarily connected to higher-layer’s addressing scheme
- Geometric routing used for node-centric addressing.
 - Geographic routing, Integrated geographic forwarding (IGF)
- Publish/subscribe and tuple-spaces run over node-centric routing.
 - Linda, T-spaces.
Cerf & Khan paper

• Describes original thinking behind IP
 – Not called that.

• Goals:
 – Resource sharing across all packet-switched networks
 – Crossing network boundaries

• Means:
 – New protocols:
 • Network protocol
 • Host protocol
Concepts

• Internetwork
 – Network of networks
 – Drives many design decisions

• Gateway
 – Bridges networks
 – Must Understands IP

• Process level communication
Design Choices

• Internetwork limits functionality
 – No fancy flow-control schemes
 – End-to-end flow control, re-transmission, and re-assembly.

• Only gateways and communicating end hosts must learn known protocols
 – Incremental deployment
Concerns

• Different packet sizes
 – Gateways fragment, end hosts assemble
• Transmission failures
• Sequencing
• Flow control
 – End hosts handle
• Process to port mappings
 – End hosts rendezvous using listen and ports
Retrospect

- Fragmentation was not as critical as first thought
- TCP/process communication would have to wait for BSD socket interface
 - 1983
 - Invigorated both IP and Unix communities.
- Hugely successful
 - What made this a success?
 - Does paper follow the “New Jersey” design philosophy? http://www.jwz.org/doc/worse-is-better.html
- What happened to billing and security?
Switching

- Observe totally different way to perform routing (circuit switching) from basic packet switching
- SS7 is the classic PSTN network
 - “Alphabet soup” of networking elements
 - Complex interconnects
 - Devices and links have particular functions
Elements of an SS7 Network

• Nodes:
 – Signaling Switching Point (STP)
 – Signaling transfer point (STP)
 – Signaling control Point (SCP)

• Message types
 – Message signal units (MSU)
 – Link status signal units (LSSU)
 – Fill-in signal units (FISUs)
SS7 Network
Netheads vs. Bellheads

- Terminology: Wired article
- Different goals
 - Unified network vs. internetwork
- Separate node types
 - Vs. only gateways and hosts
- Separate link types
 - Switching, trunk,
 - Vs. All links “uniform”
- Pairwise reliability of elements and links
 - Vs. reliability only via redundant paths
- Databases provided for lookups as part of network
 - Vs. no DB needed, all DBs external to network
Retrospect

• Hard to have everything in one network
 – Billing, security, reliability: need DBs!
 – Simple data transport, flat network elements

• Reality is that IP runs on top of telecom networks
 – Network of networks - wasn’t this how it was supposed to work?
Problems with traditional routing

• Properties of embedded sensor networks
 – Wireless -> mobile nodes, lots of updates
 – Dense -> High volumes
 – Battery power -> can’t tolerate a lot of traffic
 – Low duty cycle -> missed updates

• Under these assumptions, TBF is an elegant way to handle many of these issues.
Geometric addressing and routing

• Why send data to a specific node (machine, unit, process).

• Instead, describe data flow in physical space.
 – Nodes along the space will get the data
 – Generalization allow many ways to describe data-flow:
 • Lines, circles, honeycomb

• Advantages:
 – Source based, no routing tables
 – Robust to mobility, node failure,
 – Easy to specify multi-path constructs.
Encoding

- Use parametric encoding:
 - \(x = X(t), \ y = Y(t) \)
- Variable \(t \) describes packet “progress”
 - Time, hop count, distance
- How to describe in packet:
- Type of object + parameters
 - Line, circle, hexagon.
- Reverse polish notation equation of \(X(t), Y(t) \)
 and \(t \) in packet itself.
TBF

Neighborhood of N_0

$X(t), Y(t)$

N_0, N_1, N_2, N_3, N_4

$t_0 - 2dt$, t_0, $t_0 + dt$, $t_0 + 3dt$, $t_0 + 5dt$
Linear Example

Trajectory 1: \(x(t) = t, \quad y(t) = 2t + 1 \)

Trajectory 2: \(x(t) = 2t, \quad y(t) = 4t + 1 \)
Boomerang (circle)

• Circle with radius 2, clockwise:
 \[x(t) = 2 \cos(t), \quad y = 2 \sin(t) \]

• Counterclockwise:
 \[x(t) = 2 \cos(-1 \times t), \quad y = 2 \sin(-1 \times t) \]
Planar covering example (10 hops)

\[
\begin{bmatrix}
x \\
y
\end{bmatrix} = \begin{bmatrix}
11 \cdot \cos(t) - 6 \cdot \cos\left(\frac{11}{6} \cdot t\right) \\
11 \cdot \sin(t) - 6 \cdot \sin\left(\frac{11}{6} \cdot t\right)
\end{bmatrix}, \quad t = 0 \ldots 10
\]
Planar covering example (40 hops)
Uses

- Discovery (maps to intersection)
- Flooding (maps to covering)
- Multipath routing
- Ad-Hoc routing
Discovery Example
Limitations

• Requires physically dense networks
• Nodes need positioning information
 – Global
 – Local
• How to unify with node-based addressing?
 – What’s the best way to perform both?
Data-Centric Routing

- Addresses same problems as TBF
- More directed for sensor networks
 - More like a programming model for sensor networks?
Directed Diffusion

• Sensor node names data with attributes
 – This is like a “publish”

• Other nodes express interests based on these attributes
 – This is like a “subscribe”

• Network nodes propagate interests
 – interests establish gradients that direct diffusion of data
 – A gradient is a route between a publisher and subscriber

• As it propagates, data may be locally transformed (e.g. aggregated) or cached at nodes
Building gradients (routing)

- What are the local rules for propagating interests?
 - flood interest
 - More sophisticated techniques possible: directional interest propagation, based on cached aggregate information

- What are the rules for establishing gradients?
 - In example, highest gradient towards neighbor who first sends interest
 - Others possible e.g., towards neighbor with highest remaining energy
Example
Implicit assumptions

• Not much unicast traffic
 – Valid for sensor networks?
• Gradients/routes are soft state
 – Require continuous reinforcement to maintain
• Gradients/routes can vary
 – E.g. Multipath
• Traffic can be reduced with aggregation
Implementation issues

• Simple implementations possible
 – Flood interest
 – Use backward learning to build gradients
 – Use timers to discard gradients if not refreshed.
• Straightforward to build broadcast, multicast,
• Simple in this case is not efficient.
Limitations

• Efficient naming and interest matching
 – Flooding?. similar problems in any pub/sub network (Tivoli, Linda, T-Spaces)

• If placed in routing layer, how to get efficient node-centric routing?
 – Simple way if first bullet is solved though

• Right layer?
 – Networking vs. application.
Summary

- Switching/Node centric dominate
- Geometric and pub/sub
 - Elegant, but will be widely used?