CS 552
Computer Networks
Quality Of Service

Richard Martin

Credit slides by B. Nath, I. Stoica
Outline

• What is Quality of Service
• Basic mechanisms
 – Leaky and token buckets
• Integrated Services (IntServ)
• Differentiated Services (DiffServ)
• Economics and Social factors facing QoS
Best Effort vs. QoS

• **Best Effort:**
 – You get a link to the Internet with at most B bits/sec.
 – If you don’t like it, switch to another provider.

• **Quality of Service (Premium Service)**
 – We provide you some kind of guarantees for:
 • Bandwidth
 • Latency
 • Jitter
 – I.e., network is engineered to provide some Quality beyond “whatever”
The Holy Grail of computer networking is to design a network that has the flexibility and low cost of the Internet, yet offers the end-to-end quality-of-service guarantees of the telephone network.

--S. Keshav
Two Styles of QoS

• Worse-case
 – Provide bandwidth/delay/jitter guarantee to every packet
 – E.g., “hard real time”

• Average-case
 – Provide bandwidth/delay/jitter guarantee over many packets
 – Statistical in nature
 – E.g. “Soft real time”
Case 1: Source attempts to connect to destination, and attempts to reserve 4 Mbps for the connection

Result: Connection accepted. There is enough bandwidth available. Available link bandwidths updated.

Case 2: Source attempts to connect to destination, and attempts to reserve 5 Mbps for the connection

Result: Failure. There is not enough bandwidth available on one of the links.
Resource Reservation (cont’d)

• Once a connection is accepted, the host must use only the amount of resources reserved. It may not use more than that.
• What if the host is malicious and attempts to use more network resources than it reserved?
Leaky Bucket

• Used in conjunction with resource reservation to police the host’s reservation
• At the host-network interface, allow packets into the network at a constant rate
• Packets may be generated in a bursty manner, but after they pass through the leaky bucket, they enter the network evenly spaced
Leaky Bucket: Analogy

Leaky Bucket

Packets from host

Network
Leaky Bucket (cont’d)

• The leaky bucket is a “traffic shaper”: It changes the characteristics of packet stream
• Traffic shaping makes more manageable and more predictable
• Usually the network tells the leaky bucket the rate at which it may send packets when the connection begins
• Polices the average rate
Leaky Bucket:
Doesn’t allow bursty transmissions

• In some cases, we may want to allow short bursts of packets to enter the network without smoothing them out
• For this purpose we use a token bucket, which is a modified leaky bucket
Token Bucket

- The bucket holds tokens instead of packets
- Tokens are generated and placed into the token bucket at a constant rate
- When a packet arrives at the token bucket, it is transmitted if there is a token available. Otherwise it is buffered until a token becomes available.
- The token bucket has a fixed size, so when it becomes full, subsequently generated tokens are discarded
Token Bucket

Packets from host

Token Generator
(Generates a token once every T seconds)

Network
Token Bucket vs. Leaky Bucket

Case 1: Short burst arrivals

Arrival time at bucket

Departure time from a leaky bucket
Leaky bucket rate = 1 packet / 2 time units
Leaky bucket size = 4 packets

Departure time from a token bucket
Token bucket rate = 1 tokens / 2 time units
Token bucket size = 2 tokens
Token Bucket vs. Leaky Bucket

Case 2: Large burst arrivals

Arrival time at bucket

Departure time from a leaky bucket
Leaky bucket rate = 1 packet / 2 time units
Leaky bucket size = 2 packets

Departure time from a token bucket
Token bucket rate = 1 token / 2 time units
Token bucket size = 2 tokens
Flow Specification: Token Bucket

- Characterized by two parameters \((r, b)\)
 - \(r\) – average rate
 - \(b\) – token depth
- Assume flow arrival rate \(\leq R\) bps (e.g., \(R\) link capacity)
- A bit is transmitted only when there is an available token
- Arrival curve – maximum amount of bits transmitted by time \(t\)
Quality of service issues

- Flow specification
 - Flow spec: traffic characteristics, QoS requirements (delay, jitter, bandwidth)
- Routing
 - Routing traffic to best meet demand
- Resource reservation
 - End-host signaling to network QoS resource requirements
- Admission control
 - Limiting number of reservations
- Packet scheduling
 - Packet by packet scheduling (fairness, delay)
- RSVP addresses reservation
Integrated Services Example: Data Path

- Per-flow classification
Integrated Services Example: Data Path

- Per-flow buffer management
Integrated Services Example

- Per-flow scheduling
How Things Fit Together

Routing Messages

Routing

RSVP

Admission Control

Forwarding Table

Per Flow QoS Table

Route Lookup

Classifier

Scheduler
Service Classes

- Multiple service classes
- Service: contract between network and communication client
 - End-to-end service
 - Other service scopes possible
- Three common services
 - Best-effort (“elastic” applications)
 - Hard real-time (“real-time” applications)
 - Soft real-time (“tolerant” applications)
Worse-case : Guaranteed Services

• Service contract
 – Network to client: guarantee a deterministic upper bound on delay for each packet in a session
 – Client to network: the session does not send more than it specifies

• Algorithm support
 – Admission control based on worst-case analysis
 – Per flow classification/scheduling at routers
Average-case: Controlled Load Service

• Service contract:
 – Network to client: Average delay, jitter, bandwidth, e.g., makes network appear as an unloaded, best effort network with bandwidth and delay
 – Client to network: the session does not send more than it specifies

• Algorithm Support
 – Admission control based on measurement of aggregates
 – Scheduling for aggregate possible
Role of RSVP in the Architecture

• Signaling protocol for establishing per flow state
• Carry resource requests from hosts to routers
• Collect needed information from routers to hosts
• At each hop
 – Consult admission control and policy module
 – Set up admission state or informs the requester of failure
RSVP Design Features

- IP Multicast centric design
- Receiver initiated reservation
- Different reservation styles
- Soft state inside network
- Decouple routing from reservation
IP Multicast

- Best-effort MxN delivery of IP datagrams
- Basic abstraction: IP multicast group
 - Identified by Class D address: 224.0.0.0 - 239.255.255.255
 - Sender needs only to know the group address, but not the membership
 - Receiver joins/leaves group dynamically
- Routing and group membership managed distributedly
 - No single node knows the membership
 - Tough problem
 - Various solutions: DVMRP, CBT, PIM
RSVP Reservation Model

• Performs signaling to set up reservation state for a session

• A session is a simplex data flow sent to a unicast or a multicast address, characterized by
 – <IP dest, protocol number, port number>

• Multiple senders and receivers can be in session
The Big Picture

Network

Sender
PATH Msg
Receiver

RSVP Usage and Related Issues
The Big Picture (2)
RSVP terminology

- Flow descriptor (Flow spec + Filter Spec)
- Flow spec (Rate, max burst)
 - Sender can Explicitly specify flow spec or not specify
- Filter Spec (Sender address, TCP/UDP, Port#)
 - Aids in combining similar flows
 - Filter can be shared (SE-style) or can use wild cards (all senders on a given port or a given sender on all ports, etc)
 - The style may be *shared* or *distinct* in a sense that all reservations may be handled as one single reservation or there may be a single reservation for each upstream sender respectively.
RSVP Basic Operations

• Sender: sends PATH message via the data delivery path
 – Set up the path state each router including the address of previous hop

• Receiver sends RESV message on the reverse path
 – Specifies the reservation style, QoS desired
 – Set up the reservation state at each router

• Things to notice
 – Receiver initiated reservation
 – Decouple routing from reservation
 – Two types of state: path and reservation
RSVP messages

- PATH message – sets up state along path followed by packets
- RESV message – request for reservation back along setup path
- PATH_TEAR, RESV_TEAR, RESV_CONFIRM, RESV_ERROR, PATH_ERROR
RSVP Operation

Sender

Receiver1

Merged reservations

Receiver2

Merged reservations

Receiver3
RSVP PATH MESSAGE

- From sender to receiver (unicast or multicast)
- Intercepted at each RSVP aware hop
- Includes
 - Sender TSpec: Traffic characteristics of the sender
 - Token bucket rate, depth, max flow rate, max packet size
 - forms one side of the "contract" between the data flow and the service.
 - F-flag: specify whether filtered reservation is allowed
- Routers store:
 - Path state, i.e., PHOP address to previous hop (RSVP aware node)
 - If F-flag is set, store sender and its flowspec
 - Otherwise, just add new link to multicast tree
RSVP RESV MESSAGE

• From receiver to sender(s) to reserve resources
• Sent hop-by-hop using PHOP information
• Reservation style and flow description
 – Reservation style (FF, SE, WF)
 – Fixed-filter, Shared-explicit, wildcard-filter
 – Senders to which the reservation applies
 – Rspec, QoS specific requirements
 – RSpec is highly specific to the service required, and may include information like bandwidth allocation, maximum delay, or packet loss probabilities etc.
• RESV messages processing at each hop
 – Merging of RESV messages
 – Forwards resv messages using PHOP
Route Pinning

- Problem: asymmetric routes
 - You may reserve resources on $R \rightarrow S_3 \rightarrow S_5 \rightarrow S_4 \rightarrow S_1 \rightarrow S$, but data travels on $S \rightarrow S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow R$!

- Solution: use PATH to remember direct path from S to R, i.e., perform route pinning
How Is the Token Bucket Used?

- Can be enforced by
 - End-hosts (e.g., cable modems)
 - Routers (e.g., ingress routers in a Diffserv domain)
- Can be used to characterize the traffic sent by an end-host
Source Traffic Characterization

- Arrival curve – maximum amount of bits transmitted during an interval of time \(t \)
- Use token bucket to bound the arrival curve
QoS Guarantees: Per-hop Reservation

- **End-host:** specify
 - the arrival rate characterized by token-bucket with parameters \((b,r,R)\)
 - the maximum maximum admissible delay \(D\)

- **Router:** allocate bandwidth \(r_a\) and buffer space \(B_a\) such that
 - no packet is dropped
 - no packet experiences a delay larger than \(D\)

\[
\text{slope } r_a = \frac{b \cdot R}{R-r} \\
\text{slope } r
\]

\[
\text{bits} \\
\text{bits}
\]

\[
b \cdot \frac{R}{R-r} \\
B_a \\
D
\]
End-to-End Reservation

• When R gets PATH message it knows
 – Traffic characteristics (tspec): (r,b,R)
 – Number of hops
• R sends back this information + worst-case delay in RESV
• Each router along path provide a per-hop delay guarantee and forward RESV with updated info
 – In simplest case routers split the delay
Reservation Style

- **Motivation:** achieve more efficient resource utilization in multicast (M x N)
- **Observation:** in a video conferencing when there are M senders, only a few can be active simultaneously
 - Multiple senders can share the same reservation
- **Various reservation styles specify different rules for sharing among senders**
Reservation Styles and Filter Spec

• Reservation style
 – use filter to specify which sender can use the reservation

• Three styles
 – Wildcard filter: does not specify any sender; all packets associated to a destination shares same resources
 • Group in which there are a small number of simultaneously active senders
 – Fixed filter: no sharing among senders, sender explicitly identified for the reservation
 • Sources cannot be modified over time
 – Dynamic filter: resource shared by senders that are (explicitly) specified
 • Sources can be modified over time
Wildcard Filter Example

- Receivers: H1, H2; senders: H3, H4, H5
- Each sender sends B
- H1 reserves B; listen from one server at a time
Wildcard Filter Example

- H2 reserves B
Wildcard Filter

• **Advantages**
 – Minimal state at routers
 • Routers need to maintain only routing state augmented by reserved bandwidth on outgoing links

• **Disadvantages**
 – May result in inefficient resource utilization
Wildcard Filter: Inefficient Resource Utilization Example

- H1 reserves 3B; wants to listen from all senders simultaneously
- Problem: reserve 3B on (S3:S2) although 2B sufficient!
Fixed Filter Example

- Receivers: H2, H3, H4, H5; Senders: H1, H4, H5
- Routers maintain state for each receiver in the routing table
Fixed Filter Example

- H2 wants to receive B only from H4
Dynamic Filter Example

- H5 wants to receive 2B from any source
Soft State

- Per session state has a timer associated with it
 - path state, reservation state
- State lost when timer expires
- Sender/Receiver periodically refreshes the state
- Claimed advantages
 - no need to clean up dangling state after failure
 - can tolerate lost signaling packets
 - signaling message need not be reliably transmitted
 - easy to adapt to route changes
- State can be explicitly deleted by a Teardown message
Tear-down Example

- H4 leaves the group
 - H4 no longer sends PATH message
 - State corresponding to H4 removed
Tear-down Example

- H4 leaves the group
 - H4 no longer sends PATH message
 - State corresponding to H4 removed
RSVP Soft-state

- RSVP control messages need to be sent periodically
 - State will disappear if not refreshed
 - Periodic state refresh every \(t \) sec (30 sec)
 - If no refresh within \(n^*t \) \((n=3)\), delete state

- RSVP messages sent as router-alert message
 - Intermediate routers intercept packets and update state accordingly
Soft State (cont)

- Per session state has a timer associated with it
 - Path state, reservation state
- State lost when timer expires
- Sender/Receiver periodically refreshes the state, resends PATH/RESV messages, resets timer
- Claimed advantages
 - No need to clean up dangling state after failure
 - Can tolerate lost signaling packets
 - Signaling message need not be reliably transmitted
 - Easy to adapt to route changes
- State can be explicitly deleted by a Teardown message
RSVP and Routing

• RSVP designed to work with variety of routing protocols
• Minimal routing service
 – RSVP asks routing how to route a PATH message
• Route pinning
 – addresses QoS changes due to “avoidable” route changes while session in progress
• QoS routing
 – RSVP route selection based on QoS parameters
 – granularity of reservation and routing may differ
• Explicit routing
 – Use RSVP to set up routes for reserved traffic
Recap of RSVP

- **PATH message**
 - sender template and traffic spec
 - advertisement
 - mark route for RESV message
 - follow data path

- **RESV message**
 - reservation request, including flow and filter spec
 - reservation style and merging rules
 - follow reverse data path

- **Other messages**
 - PathTear, ResvTear, PathErr, ResvErr
Why did IntServ fail?

• Economic factors
 – Deployment cost vs Benefit
• Is reservation, the right approach?
 – Multicast centric view
• Is per-flow state maintenance an issue?
• More about QoS in general …
What is the Problem?

• Goal: provide support for wide variety of applications:
 – Interactive TV, IP telephony, on-line gaming (distributed simulations), VPNs, etc

• Problem:
 – Best-effort cannot do it?
 – Intserv can support all these applications, but
 • Too complex
 • Not scalable
Differentiated Services (Diffserv)

- Build around the concept of domain
- Domain – a contiguous region of network under the same administrative ownership
- Differentiate between edge and core routers
- Edge routers
 - Perform per aggregate shaping or policing
 - Mark packets with a small number of bits; each bit encoding represents a class (subclass)
- Core routers
 - Process packets based on packet marking
- Far more scalable than Intserv, but provides weaker services
Diffserv Architecture

- **Ingress routers**
 - Police/shape traffic
 - Set Differentiated Service Code Point (DSCP) in Diffserv (DS) field
- **Core routers**
 - Implement Per Hop Behavior (PHB) for each DSCP
 - Process packets based on DSCP
Differentiated Service (DS) Field

- DS filed reuse the first 6 bits from the former Type of Service (TOS) byte
- The other two bits are proposed to be used by ECN
Differentiated Services

- Two types of service
 - Assured service
 - Premium service
- Plus, best-effort service
Assured Service
[Clark & Wroclawski ‘97]

- Defined in terms of user profile, how much assured traffic is a user allowed to inject into the network
- Network: provides a lower loss rate than best-effort
 - In case of congestion best-effort packets are dropped first
- User: sends no more assured traffic than its profile
 - If it sends more, the excess traffic is converted to best-effort
Assured Service

- Large spatial granularity service
- Theoretically, user profile is defined irrespective of destination
 - All other services we learnt are end-to-end, i.e., we know destination(s) apriori
- This makes service very useful, but hard to provision (why?)
Premium Service
[Jacobson ’97]

• Provides the abstraction of a virtual pipe between an ingress and an egress router
• Network: guarantees that premium packets are not dropped and they experience low delay
• User: does not send more than the size of the pipe
 – If it sends more, excess traffic is delayed, and dropped when buffer overflows
Edge Router

Data traffic -> Classifier

Class 1: Traffic conditioner
Class 2: Traffic conditioner

Ingress -> Marked traffic

Best-effort -> Scheduler

Per aggregate Classification (e.g., user)

Traffic conditioner

Class 1

Class 2

Best-effort

Scheduler
Assumptions

• Assume two bits
 – P-bit denotes premium traffic
 – A-bit denotes assured traffic

• Traffic conditioner (TC) implement
 – Metering
 – Marking
 – Shaping
TC Performing Metering/Marking

- Used to implement Assured Service
- In-profile traffic is marked:
 - A-bit is set in every packet
- Out-of-profile (excess) traffic is unmarked
 - A-bit is cleared (if it was previously set) in every packet; this traffic treated as best-effort
TC Performing Metering/Marking/Shaping

- Used to implement Premium Service
- In-profile traffic marked:
 - Set P-bit in each packet
- Out-of-profile traffic is delayed, and when buffer overflows it is dropped
Scheduler

• Employed by both edge and core routers
• For premium service – use strict priority, or weighted fair queuing (WFQ)
• For assured service – use RIO (RED with In and Out)
 – Always drop OUT packets first
 • For OUT measure entire queue
 • For IN measure only in-profile queue
Scheduler Example

- Premium traffic sent at high priority
- Assured and best-effort traffic pass through RIO and then sent at low priority

Diagram:

1. P-bit set? (If yes, go to high priority. If no, continue down)
2. A-bit set? (If yes, proceed to RIO. If no, go back up to the previous decision point)
3. RIO (Depending on the previous decisions, either high or low priority)

Decision points:
- P-bit: yes → high priority
- P-bit: no → A-bit
- A-bit: yes → RIO
- A-bit: no → P-bit (loop back to previous decision)
- RIO (Depending on the prior decisions)
Control Path

• Each domain is assigned a Bandwidth Broker (BB)
 – Usually, used to perform ingress-egress bandwidth allocation
• BB is responsible to perform admission control in the entire domain
• BB not easy to implement
 – Require complete knowledge about domain
 – Single point of failure, may be performance bottleneck
 – Designing BB still a research problem
Example

- Achieve end-to-end bandwidth guarantee
Comparison to Best-Effort and Intserv

<table>
<thead>
<tr>
<th></th>
<th>Best-Effort</th>
<th>Diffserv</th>
<th>Intserv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service</td>
<td>Connectivity</td>
<td>Per aggregate isolation</td>
<td>Per flow isolation</td>
</tr>
<tr>
<td></td>
<td>No isolation</td>
<td>Per aggregate guarantee</td>
<td>Per flow guarantee</td>
</tr>
<tr>
<td></td>
<td>No guarantees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service scope</td>
<td>End-to-end</td>
<td>Domain</td>
<td>End-to-end</td>
</tr>
<tr>
<td>Complexity</td>
<td>No setup</td>
<td>Long term setup</td>
<td>Per flow setup</td>
</tr>
<tr>
<td>Scalability</td>
<td>Highly scalable (nodes maintain only routing state)</td>
<td>Scalable (edge routers maintains per aggregate state; core routers per class state)</td>
<td>Not scalable (each router maintains per flow state)</td>
</tr>
</tbody>
</table>
Summary

- Diffserv more scalable than Intserv
 - Edge routers maintain per aggregate state
 - Core routers maintain state only for a few traffic classes
- But, provides weaker services than Intserv, e.g.,
 - Per aggregate bandwidth guarantees (premium service) vs. per flow bandwidth and delay guarantees
- BB is not an entirely solved problem
 - Single point of failure
 - Handle only long term reservations (hours, days)
Building A QoS Router

• Is a high-bandwidth QoS capable router even possible?
 – Packets Per Second (PPS) the metric
• Real time operation
 – “No queuing before processing”
• Resource management
 – Link bandwidth
 – Buffer space
Real Time Operation

- Problem: Can queue packets while waiting to process
 - E.g. determine flow, output,
 - General packet classification problem (N-dimensional)
 - 5 dimensions, 512 rules, 1M PPS

- Head of line blocking problem

- Solution:
 - Aggressive router design
 - Multiprocessor, switched, shared forwarding engines
 - Similar to other higher performance routers
 - Custom logic (ASIC, FPGA)
Resource Sharing
Resource Sharing

per-flow queueing for selected classes of traffic
Non-technical Factors Impacting QoS

• Existing Networks
 – What is available today to solve our needs? Why switch?

• Business Models
 – How QoS make doing business harders

• Deployment Issues
 – How QoS makes running the network harder.
Existing Networks

• Motivating applications?
 – Tele/Video conferencing, video distribution, virtual circuits

• IP+QoS must be better AND cheaper than:
 – PSTN with N-way calling
 – Cable TV with digital recorders (Tivo)
 – Telecom leased lines (ISDN, ATM, sonet)
 – Peer to Peer networks
Business Issues

- Service provider offers premium service
- Must be something customer can:
 - Understand
 - Counterexample: Complex statistical reasoning
 - Verify
 - 3rd party?
 - How do you know it works? Simulate a DoS attack?
 - Reclaim loss if service is not delivered
 - If you buy a lock and it doesn’t work, do you try to get your $ back? What if no one tried to break in?
Deployment Issues

• Today’s IP operators use simple models to reason about what is a “good network”

• Things you worry about:
 • IP packets
 • BGP routing
 • Simple Service Level Agreements (SLA)
Deployment Issues

• QoS introduces extra effort for operators:
 – shaping, policing, reservation signaling, per-reservation billing and settlement.

• QoS deployment changes:
 – Interface between an ISP and its neighbors
 – adds whole new complexities for customer and support personnel,
 – creates the need for accurate service auditing,

• Increases the risk of litigation

• Tradeoff:
 – Use QoS vs. make sure utilization is low most of the time? Which is easier?
Non-technical Issues summary

• Working on QoS for IP for 20 years?
 – Why little/no progress?

• QoS must be enough of a improvement to overcome all non-technical obstacles.
 – Value to users must exceed all costs
 – A typical technology adoption problem?

-> Technically better isn’t always good enough
 – QWERTY 10x backward compatibility rule?
 – QoS not cheaper, so 1000x?