Localization Light-Seminar Summary

Service Construction

- Motivation
 - What services/application need localization
 - Build it and they will come? (supply-side argument)
- Security
 - Unforeseen issues? (e.g. spam)
- Privacy
 - Mixed reactions

2

Multi-Lateration Techniques

- Measure time directly from clocks in sender and receiver
 - GPS
- Time-difference of arrival between media (radio, ultrasound)
 - Medusa
 - Hazas/Ward
 - Cricket

Sample Localization Accuracy

Thoronton and the second of the second of

Multi-Lateration

- Accurate distance measure from sender to receiver
- · Line-of-sight to landmarks critical
 - Both for GPS, ultrasound
- · Is this valid indoors?
 - How to obtain coverage in this case?
 - How hard is infrastructure?

5

Sampling and Scene Analysis

- · Observe properties of the spectrum
- · Match properties to locations on a map
 - MS RADAR
 - · Sampled points, signal space mapping
 - CMU Triangulation, Mapping, Interpolation
 - UMD Bayesian

Sampling + Scene Analysis

- · Pro: little added infrastructure
- Con: sampling
- Open issues:
 - AP density, placement
 - "auto sampling"?
 - Sampling density
 - Scene changes over time
 - Area/volume analysis vs. point analysis
 - Is 3-4m accuracy really the best possible?

11

Add-hoc Approaches

- · Ad-hoc positioning (APS)
 - Estimate range to landmarks using hop count or distance summaries
- · Convex Hull Estimation
 - Constrain positions using systems of equations, use optimization to solve
- · Point-in-Triangle
 - Node located in an enclosing triangle test, repeat to reduce location
- · Multi-Dimensional Scaling
 - Map high dimension to low dimensional space

Ah-Hoc Summary

- · Wide variation in approaches
- · Not clear there is a "winner"
 - 40% of radio range good estimate
 - better possible with lots of excess resources, perfect information
- APS: simple, distributed, many messages
- · Others: Centralized, complex