Webdust

Spatial Web Overview

Rich Martin
Badri Nath
Rutgers University

DARPA site visit
8/1/2001
Spatial Web Goals

• **Describe objects and conditions in physical space**
 – What kind of tank last crossed the intersection?
 – How many are in the field?
 – Where’s the projector?

• **Easy to add information**
 – Only require trust of either neighbors or a higher-authority

• **Allow wide range of data types**
 – want add info about different objects with different properties

• **Ad-Hoc construction**
 – System configures itself (within limits)

• **Not tied to any specific spatial model**
 – I don’t think in WGS-84 coordinates (GPS)
Outline

- Ideology and assumptions
- Example scenarios
- Realizing the software
- Challenges
- Timeline
Spatial Web Ideology

- **Every physical object maintains a textual description of itself**
 - sensed data and object state - e.g. how much gas in the tank?

- **Objects are network addressable**
 - Contrast to diffusion routing with publish/subscribe addressability
 - How can a pub/sub model fit into natural notion of “physical object”?

- **Hierarchy of objects, servers and networks**
 - Move beyond the simple “flat sensor field” network & node assumption
 - Hierarchal tree-like structure more likely
 - Spatial servers and crawlers can leverage the hierarchy
The Spatial Web Concepts

- **SPatial ObjecT (SPOTs)**
 - A name-able entity in the physical space
 - reachable via a network
 - Contains: (1) data, (2) location, (3) links to nearby objects

- **SPatial tAG (SPAGs)**
 - The location information
 - A textual description of the space described in the SPOT

- **SPatial Links (SPLINKs)**
 - The link information
 - Describe relationship between SPOTS
 - Neighbors
 - Superspace
 - Subspace
Spatial Web Representation

- **State of the physical space is defined as a distributed object graph**
 - Web, DNS maintain large distributed graphs

- **Key to success is how the graph can be extracted and analyzed**
 - Leverage wealth of graph theory on structure & traversal
 - E.g. Speed of extraction => nodes visited per time,
 - E.g. Energy consumed => watts/node

- **Mobility alters the link structure**
 - How fast can we detect these changes?
 - Staleness of info?
 - Pro-active updates?
Roots from 2 large distributed Systems

- **DNS (Domain Name Service)**
 - Distributed authority & control
 - Hierarchical naming & lookup
 - Hard to add/remove content (DNS records)

- **WWW (World Wide Web)**
 - Multiple data types
 - Ad-Hoc structure
 - Easy to add/remove documents
 - No Hierarchy
 - Very weak authority
Example Scenario

Rich’s office

IR sensor mote

Hammer with mote

Badri’s office
Stationary sensor objects define a stable graph

Mobile objects change link structure
Mobile Example

Stationary sensor objects define a stable graph

Mobile objects change link structure
Stationary sensor objects define a stable graph

Mobile objects change link structure
Realizing the Spatial Web

- **3 Software components:**
 - Spatial Object
 - Crawler
 - Server

- **Use "HTTP-lite" protocol to "glue" components together**

- **2 Protocols**
 - peer discovery protocol
 - SPOT transfer protocol
Example SPOT

<SPOT>
 <name>Rich’s Martin’s office</name>
 <frame>WGS-84</frame>
 <spag>
 <cube lat="+40.52130",
 lon="-74.46103",
 alt="62m",
 side="3m">
 </spag>
 <splink>_{http://128.6.4.4:/sp1}</splink>
</SPOT>
Example Linkage

superspace link

<SPOT>
 <name>Rich’s claw hammer</name>
 <frame>Core Hall</frame>
 <spag>Room 304</spag>
 <splink>^{http://www.cs.rutgers.edu/~rmartin/office}</splink>
</SPOT>

subspace link

<SPOT>
 <name>Rich’s Martin’s office</name>
 <frame>WGS-84</frame>
 <spag>
 <cube lat="+40.52130",
 lon="-74.46103",
 alt="62m",
 side="3m">
 </spag>
 <splink>_{http://128.6.4.4/sp1}</splink>
</SPOT>
SPAGs

- A short textual description of the shape & location of the objects
 - Both shape and position needed!
- **Coordinates dependent upon the SPOT’s frame (E.g. datum)**
 - E.g. WGS-84 for GPS, Military Grid Reference System (MGRS), even own frames (E.g. “core hall”)
- Few assumptions make it easy to create new SPOTs
 - most people don’t think in MGRS or WGS-84
- **Spatial Server does hard work of combining SPAGs**
 - Assume server is running on a “powerful” node
 - full blown OS, database, floating point, stable storage …
 - Today, even an Ipaq is good enough!
SPLINKs

- **A URL-style pointer to another SPOT**
 - Superspace, pointer to enclosing SPOT
 - Subspace, pointer to enclosed SPOT
 - Neighbor, pointer to non-enclosing/overlapping SPOT

- **DNS-like defined hierarchy aids crawling SPOTs**
 - ignore regions, sampling regions, directed crawls – hard on the web!

- **Spatial graph structure leverages network topology**
 - network structure at low/med grain enforces spatial structure
 - peer discovery protocol enforces at the lowest level
 - Higher levels enforced by natural structure created by humans
Spatial Crawlers and Servers

- **Spatial Web Crawler**
 - Charged with bringing SPOTs to the server(s)
 - *i.e.* load the graph into the server
 - More structure than a web page for intelligent traversal
 - Defining speed and range of crawling are key research

- **Spatial Web Servers**
 - Hold a datastore of SPOTs
 - Fit SPOTs from different frames into coherent whole
 - Answers spatial queries
 - Can mass-exchange records (SPOT-transfer) with other servers
SPOT peer discovery protocol

- SPOT peer discovery protocol used to create ad-hoc spatial structure
 1. Local Broadcast
 2. Neighbors respond with SPOTS
 3. Add Splinks to the local SPOT

- Add-hoc link structure should match natural spatial structure defined by wireless and wired links
 - Aggregation of local area networks map cleanly to spatial structure
SPOT transfer protocol

- Method to aggregate SPOTs and manage size and scope
- A crawler collects SPOTs over a given region
 - entire world not reachable
- Server pieces together into a searchable database

- SPOT-transfer protocol moves SPOTS between servers
 - E.g. Give me all SPOTs within cube X,Y,Z, S
 - Like DNS “zone-transfer”, no web equivalent

- Leverages natural hierarchy
 - Aids security (maybe hinder if not careful!)
 - Aids manageability
Security

• **Security**: How do I know the data isn’t tampered?
 – SPOT encryption
 – Challenge protocol for servers

• **Authority**: How is the data coming from the “owner” of a space?
 – "web of trust" model for links, prevent bogus regions of spatial web
 – Signed SPOTS
Just a few of the challenges ...

• **Tradeoff between accuracy, staleness and power consumption**
 – How many objects can the crawlers visit? Statistically sample?
 – When to locally crawl for data or look up in a spatial server?
 – Mobility disrupts the graph.

• **Addressability of sensors a assumption valid?**
 – Should a single sensor map to a single SPOTs?
 – Will hierarchical data save us?

• **Security and Authentication**
 – Handle broken/bogus crawlers
 – Can SPOTs be made secure?
 – Can we protect against bogus SPOTs?
 – What if a region is compromised? (Like search-engine spam)
Timeline

• **Past Year:**
 - Version 0 of the Spatial web, SPOT, SPAGs defined
 - initial crawler
 - No spatial DB

• **This Year (2001-2002)**
 - Cram a SPOT onto motes
 - directed crawler and spatial DB
 - Use sensoria nodes as level 2, execute crawler and spatial DB

• **Next Year (2002-2003)**
 - SPOT transfer protocol
 - Experiments to measure crawl rate, time and power constrained crawling
Backup sides
Why not “just use a DMBS”

- **Static Schema**
 - Hard to add new data-types
- **Force used of SQL-query languages**
 - What if my app goes from SPOTs -> visualization directly
- **Locally rapidly changing state**
 - Spatial web approach keeps them localized
 - Why update the DB? Just leave on the object and uncrawled
- **Spatial Server probably will use a DMBS**
 - Centrally administered keeps the data