How to be a computer systems graduate student

Richard Martin
10/2000
Motivation

- Not many resources to learn how to be a successful grad student
 - Easy to get lost
- This talk: a broad picture for success
 - Give food for thought on how to pursue grad school career
Outline

- Know Thyself
 - take ownership of your degree
- Picking a topic
- The grind: making it happen
 - Investigate
 - Explore
 - Evaluate
 - Getting resources
- Communicate your results
Know thyself

- Answer: why are YOU getting a PhD?
- Prerequisite to a research career
 - University/Industrial/Government labs
- Personal development
 - learn to write, speak, critical thinking
- Learn the “Art” of computer systems design, analysis and evaluation
 - Why is a system better? More enduring?
Bad reasons

- Nothing better to do
- F-1
- Job ticket
- Grad student lifestyle
Take ownership

- No one is responsible for getting your degree but you.
 - Many obstacles
 - lack of space, equipment, advisor’s time
- System researchers must work with others
 - Advisor, staff, other students
 - Output of focused group >> lone wolf
 - BUT pick a work style and lab culture that fits you
Outline

- Know Thyself
 - take ownership of your degree
- Picking a topic
- The grind: making it happen
 - Investigate
 - Explore
 - Evaluate
 - Getting resources
- Communicate your results
Picking a topic

- **Always** have a current research topic, "proposition" or idea
- Start small
 - Ask advisor, senior students for ideas
- Later, come up with own
 - Part of a PhD is acquiring "taste"
 - Differentiate what’s cool from junk
The misnomer ----

Computer Science

- Science *(results research)*
 - Evaluation and quantification of existing phenomena
 - Modeling how the world works

- Engineering *(idea research)*
 - Building *useful* tools

- Systems research is a mix of both!
 - Know how your topic fits into ideas, results, or both
Results driving ideas

- Result: programs exhibit locality
 ➔ Idea: cache

- Result: most programs are simple
 ➔ Idea: RISC

- Result: Traffic is self-similar
 ➔ Idea: ?
Picking a topic

- Have some religion about your idea or result
 - Will greatly help when the going gets tough
- Don’t worry about people stealing your ideas
 - Feedback from sharing >> cost of theft
 - Getting people interested in your idea will be much harder than getting them to “steal” it.
- Most ideas are dead ends, few endure
 - learn to discard bad ideas quickly
 - learn to recognize a great ideas
Stay on top of events

- Follow conferences
 - sosp, sigmod, isca, asplos, sigcomm …
- Read trade rags
 - infoworld, slashdot.com, news.com, techweb.com, wired …
- Learn who are the opinion leaders in your field, know what they are doing
 - But question the established order too …
Outline

- Know Thyself
 - take ownership of your degree
- Picking a topic
- The grind: making it happen
 - Investigate
 - Explore
 - Evaluate
 - Getting resources
- Communicate your results
Investigate

- Has your idea been done before?
 - know what are in classic papers
- Why is your idea “better”?
- Why will your result be important?
- Who will care?
- Final impact if you’re successful?
Explore your idea

3 Approaches to systems research:
- Build a prototype
 - To do right is very hard
 - Ultimate validation
- Build a simulation
 - Not as hard but is it credible?
- Build a measurement apparatus

A sufficient analysis background is critical to all 3 approaches
Evaluate your idea

- How is your idea better? Result novel?
- Measure it
 - Latency, throughout, fault tolerance
 - space (still an issue?)
 - usability, manageability (new!)
- Judgment on artistic merit
 - Is your result or idea exciting?
 E.g. Cray-1, Unix, Risc, Fortran, self-similarity
Scientific method vs computer scientific method

- Scientific method
 - Control 1 parameter at a time, observe results

- Computer scientific method
 - Change everything
 - If data doesn’t fit your intuition, throw it away!
No magic

- What if it doesn’t work?
- no magic, everything can be figured out
- Form a hypothesis
 - Cross-check with other evidence
 - test with a simple experiment
- Find who’s done it before or built it and ask them
Newer evaluation points

- How will your idea mesh with the installed base?
 - Huge deployment costs?
- What are the switching costs over the current or obvious solutions?
 - Is your idea 10x better today?
- How will predictable technology advances impact your idea?
 - Will your idea be 10x better in 5 years?
Resources

- So you have a great idea?
- Need resources!
 - Human cycles
 - Funding for you!
 - Space
 - Machine cycles
 - Equipment
Funding

- Teaching Assistantship (T.A.)
 - Allow you to try grad. school
 - Ready to move on to ...
- Graduate Assistantship (G.A.)
 - also Research Assistant (R.A)
- Internships
Funding Sources

- Multi-year grants
 - Defense Advanced Research Projects Agency (DARPA)
 - National Science Foundation (NSF)

- Year-to-year
 - Corporate (Cisco, IBM, Siemens, Intel ...)
 - USENIX (student applied)
 - Rutgers/NJ
Space

- Lack of space a problem in many CS departments
- Find an Advisor
 - Hill 429 your home?
 - You’ll get more disk space too!
 - 5 MB on Paul?
Equipment

- Find an Advisor
 - Scrounge for 90 Mhz mac?
- Ask your Advisor
 - If you have good reasons, advisor can work to make things appear
 - Corollary: you have to deliver!
Outline

- Know Thyself
 - take ownership of your degree
- Picking a topic
- The grind: making it happen
 - Investigate
 - Explore
 - Evaluate
 - Getting resources
- Communicate your results
Communicate your ideas

- Clear communication defines the top students from the average
 - Critically important since dawn of science
 - What’s a brilliant result if unknown for 100 years?
- Talks
 - posters
- Papers
 - “If you didn’t write it down, it didn’t happen”
 - “Publish or perish”?
- Software releases
Talks: verbal communication

- "Ad" for your work
 - Good talk: people spread the word
 - A bad talk diverts people's attention

- Practice, practice, practice
 - Use video, mirror
 - Get feedback from advisor, other students, visit
 - Go to talks, use good ones as models

- A poster is really a mini-talk
 - 10 minute one-on-one
Papers: written communication

- 3 kinds:
 - Conference, Journal, Tech. Reports,
 - Class projects are good practice
- Start as soon as you’re far enough along to communicate results!
 - Ask advisor for model papers
 - Get feedback on your paper
Software releases

- Software use can be the ultimate test of an idea
 - vote with their mice
 - E.g. Unix, X, mosaic, Tcl/Tk, Magic

- Pros:
 - feedback, fame, personal satisfaction

- Cons:
 - Support, documentation, upgrades, users, fame
Conclusion

- You can do systems research
 - Take control of your degree
- Tenacity is key
- Pick a topic you believe in and stick with it.
Further reading

How to Be a Good Graduate Student
by Marie desJardins
http://www.cs.indiana.edu/how.2b/how.2b.html

So long, and thanks for the Ph.D.!
by Ronald T. Azuma
http://www.cs.unc.edu/~azuma/hitch4.html