SVD Preliminaries

- \(\mathbb{R}^n = \left\{ \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right) \mid x_i \text{ real} \right\} \)

- Inner product of \(x, y \in \mathbb{R}^n \): \((x, y) = \sum_{i=1}^{n} x_i y_i = x^T y \). Note: \(\|x\|_2 = \sqrt{(x, x)} \).

- \(x, y \in \mathbb{R}^n \) orthogonal if \((x, y) = 0 \).

- \(\{q_1, ..., q_k\} \subset \mathbb{R}^n \) orthonormal if \((q_i, q_j) = \delta_{i,j} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases} \)

- A matrix \(Q_{n \times n} \) is orthogonal if \(Q^T = Q^{-1} \).

- \(Q_{n \times n} \) is orthogonal \(\iff \) its columns \(\{q_1, ..., q_n\} \) are an orthonormal set.

 Proof: \((Q^T Q)_{i,j} = (\text{row } i \text{ of } Q^T, \text{ col } j \text{ of } Q) = (q_i, q_j) = \delta_{i,j} \iff \{q_1, ..., q_n\} \) orthonormal.

- A set of orthonormal vectors \(\{q_1, ..., q_n\} \subset \mathbb{R}^n \) can be used as a basis for \(\mathbb{R}^n \). In fact, it is particularly simple to represent an arbitrary vector \(x \in \mathbb{R}^n \) as a linear combination \(x = \sum_{i=1}^{n} c_i q_i \), for this is equivalent to \(x = \underbrace{[q_1, ..., q_n]}_{Q} \underbrace{\begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}}_{c} \). Using the orthogonality of \(Q \), we have \(c = Q^T x \).

- \(Q \) orthogonal \(\implies \|Qx\|_2 = \|x\|_2 \) for all \(x \in \mathbb{R}^n \).

 Proof: \(\|Qx\|_2 = \sqrt{(Qx, Qx)} = \sqrt{x^T Q^T Q x} = \sqrt{x^T x} = \|x\|_2 \).

- \(Q_{n \times n} \) orthogonal \(\implies \|AQ\|_2 = \|A\| \) for arbitrary \(A_{m \times n} \), \(\|QB\|_2 = \|B\|_2 \) for arbitrary \(B_{n \times p} \).

 (These follow easily from the preceding result.)

- \(Q \) orthogonal \(\implies \kappa_2(Q) = 1 \). (Orthogonal matrices are perfectly conditioned in the 2-norm sense.)

- \(A_{n \times n} \) a real symmetric matrix \(\implies \) \(A \) has real eigenvalues \(\lambda_1, ..., \lambda_n \) and a corresponding set of orthonormal eigenvectors \(q_1, ..., q_n \)

\[
A q_i = \lambda_i q_i, \quad i = 1, ..., n
\]

\[
(q_i, q_j) = \delta_{i,j}
\]

Equivalently, in matrix form:

\[
A \underbrace{[q_1, ..., q_n]}_{Q} = \underbrace{[q_1, ..., q_n]}_{Q} \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}
\]

\[
A = QAQ^T, \quad \Lambda = Q^T A Q
\]
Singular Value Decomposition (SVD)

Basic result: Given a real matrix $A_{m \times n}$, there exist orthogonal matrices

$$V_{n \times n} = [v_1, \ldots, v_n], \quad U_{m \times m} = [u_1, \ldots, u_m]$$

and a diagonal matrix

$$\Sigma_{m \times n} = \begin{bmatrix} \sigma_1 & & \\ & \sigma_2 & \\ & & \ddots \end{bmatrix}$$

with nonnegative diagonal entries σ_i such that

$$A = U \Sigma V^T$$ \hspace{1cm} (1)

For proof, see Golub & Van Loan, Matrix Computations (Johns Hopkins).

Picture of Σ

$m > n$:

$$\Sigma = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{bmatrix}_{m \times n}$$

$m = n$:

$$\Sigma = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{bmatrix}_{n \times n}$$

$m < n$:

$$\Sigma = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_m \end{bmatrix}_{m \times n}$$

terminology

$\sigma_1, \ldots, \sigma_{\min\{m,n\}}$: *singular values of A* (nonnegative)

v_1, \ldots, v_n: *right singular vectors of A* (orthonormal)

u_1, \ldots, u_m: *left singular vectors of A* (orthonormal)

Assumption: the singular values of $A_{m \times n}$ are indexed in nonincreasing order:

$$\sigma_1 \geq \cdots \geq \sigma_r > 0, \quad \sigma_{r+1} = \cdots = \sigma_{\min\{m,n\}} = 0 \quad \text{if } r < \min\{m,n\}.$$

Another view of the SVD

Multiplying (1) on the right by V, we get

$$AV = U \Sigma$$
i.e.,
\[
A [v_1, ..., v_r | v_{r+1}, ..., v_n] = [u_1, ..., u_r | u_{r+1}, ..., u_m] = [\sigma_1 u_1, ..., \sigma_r u_r | 0, ..., 0],
\]
which is equivalent to
\[
Av_1 = \sigma_1 u_1 \\
\vdots \\
Av_r = \sigma_r u_r \\
Av_{r+1} = 0 \\
\vdots \\
Av_n = 0
\]
So what the SVD gives us is a pair of orthonormal bases
\[
\{v_1, ..., v_n\} \text{ for } \mathbb{R}^n \\
\{u_1, ..., u_m\} \text{ for } \mathbb{R}^m
\]
in terms of which \(A_{m \times n}\) has a particularly simple (decoupled) description.

- \(Av_i = \sigma_i u_i, \ i = 1, ..., r\)
- \(\text{range}(A) \equiv \{y | y = Ax \text{ for some } x\} = \text{span}\{u_1, ..., u_r\}\)
- \(\text{rank}(A) \equiv \text{dim}(\text{range}(A)) = r\)
- \(\text{null}(A) \equiv \{x | Ax = 0\} = \text{span}\{v_{r+1}, ..., v_n\} \ (= \emptyset \text{ if } r = n)\)
- \(\text{dim}(\text{null}(A)) = n - r\)

Additional facts:

- 'outer product' form of SVD
\[
A = \sum_{i=1}^{\min\{m, n\}} \sigma_i u_i v_i^T
\]

- \(A^T = V \Sigma^T U^T \) \(\Rightarrow\) the singular values of \(A^T\) are the same as those of \(A\) and the left/right singular vectors of \(A^T\) are the right/left singular vectors of \(A\)
- \(A^T A = V (\Sigma^T \Sigma) V^T \) \(\Rightarrow\) the eigenvalues and a corresponding set of orthonormal eigenvectors for \(A^T A\) are \(\{\sigma_1^2, ..., \sigma_r^2, 0, ..., 0\}\) and \(\{v_1, ..., v_n\}\)
- \(AA^T = U (\Sigma \Sigma^T) U^T \) \(\Rightarrow\) the eigenvalues and a corresponding set of orthonormal eigenvectors for \(AA^T\) are \(\{\sigma_1^2, ..., \sigma_r^2, 0, ..., 0\}\) and \(\{u_1, ..., u_m\}\).
The SVD “layers” \mathbb{R}^n, the domain space of \mathbf{A}, according to sensitivity to \mathbf{A}, as described below:

\[
\max_{\mathbf{x} \in \mathbb{R}^n, \|\mathbf{x}\|_2 = 1} \|\mathbf{A}\mathbf{x}\|_2 = \|\mathbf{A}\mathbf{v}_1\|_2 = \|\sigma_1 \mathbf{u}_1\|_2 = \sigma_1 \\
\max_{\mathbf{x} \in \mathbb{R}^n, (\mathbf{x}, \mathbf{v}_1)\neq(0), \|\mathbf{x}\|_2 = 1} \|\mathbf{A}\mathbf{x}\|_2 = \|\mathbf{A}\mathbf{v}_2\|_2 = \|\sigma_2 \mathbf{u}_2\|_2 = \sigma_2 \\
\vdots \\
\max_{\mathbf{x} \in \mathbb{R}^n, (\mathbf{x}, \mathbf{v}_1)\neq\cdots=(\mathbf{x}, \mathbf{v}_{i-1})\neq(0), \|\mathbf{x}\|_2 = 1} \|\mathbf{A}\mathbf{x}\|_2 = \|\mathbf{A}\mathbf{v}_i\|_2 = \|\sigma_i \mathbf{u}_i\|_2 = \sigma_i
\]

Thus the dominant “mode” or effect of \mathbf{A} is $\mathbf{v}_1 \rightarrow \sigma_1 \mathbf{u}_1$, followed by $\mathbf{v}_2 \rightarrow \sigma_2 \mathbf{u}_2$, etc.

- $\mathbf{A}_{n \times n}$ is nonsingular if and only if $\kappa_2(\mathbf{A}_{n \times n}) = \sigma_1/\sigma_n$.

Applications of SVD

1. Solution of ill-conditioned system $\mathbf{A}_{n \times n}\mathbf{x} = \mathbf{b}$

\[
m = n \Rightarrow \Sigma = \begin{pmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_n \end{pmatrix}_{n \times n}
\]

\[
\mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^T \Rightarrow \Sigma\mathbf{V}^T\mathbf{x} = \mathbf{U}^T\mathbf{b}
\]

Defining $\xi = \mathbf{V}^T\mathbf{x}$, $\beta = \mathbf{U}^T\mathbf{b}$, we thus obtain an equivalent system with a diagonal coefficient matrix:

\[
\Sigma\xi = \beta.
\]

Note that since \mathbf{V} and \mathbf{U} are orthogonal, $\mathbf{x} = \mathbf{V}\xi = \sum_{i=1}^{n} \xi_i \mathbf{v}_i$ and $\mathbf{b} = \mathbf{U}\beta = \sum_{i+1}^{m} \beta_i \mathbf{u}_i$. (Thus we’re expressing \mathbf{x} and \mathbf{b} in terms of our orthonormal bases for \mathbb{R}^n and \mathbb{R}^m, respectively.)

Solution of (2):

\[
\xi_i = \frac{\beta_i}{\sigma_i}, \quad i = 1, \ldots, n \quad (\Rightarrow \mathbf{x} = \sum_{i=1}^{n} \frac{\mathbf{u}_i^T\mathbf{b}}{\sigma_i} \mathbf{v}_i)
\]

With SVD, we can now give a more complete answer to the stability question: If $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{A}(\mathbf{x} + \delta\mathbf{x}) = \mathbf{b} + \delta\mathbf{b}$ where $\|\delta\mathbf{b}\|_2 = \epsilon$, how large is $\delta\mathbf{x}$?

The corresponding transformed systems are $\Sigma\xi = \beta$, $\Sigma\delta\xi = \delta\beta$ where $\|\delta\beta\|_2 = \epsilon$. Thus

\[
|\delta\xi_i| = \left| \frac{(\delta\beta)_i}{\sigma_i} \right| \leq \frac{\epsilon}{\sigma_i}.
\]

Hence if σ_n is very small in comparison to the other σ_i’s, we expect a large $\delta\xi_n$, in which case the error in $\mathbf{x} + \delta\mathbf{x}$ will be concentrated in the direction of \mathbf{v}_n; the remaining portion of $\mathbf{x} + \delta\mathbf{x}$ may be quite accurate.
2. Least squares solution of an overdetermined linear system

Problem: Choose \(x \) to minimize
\[
Q(x) = \| A_{m \times n} x - b \|_2^2, \quad m > n
\]

Solution via normal equations: \(A^T A x = A^T b \)
(Denoting solution of normal equations by \(\bar{x} \), we have
\[
Q(\bar{x} + \delta x) = Q(\bar{x}) + \| A \delta x \|_2^2 \geq Q(\bar{x}).
\]

Solution via SVD (more stable)... Since \(m > n \), \(\Sigma \) has the following configuration:

\[
\Sigma = \begin{bmatrix}
\sigma_1 & & \\
& \ddots & \\
& & \sigma_n \\
0 & & \\
\end{bmatrix}_{m \times n}
\]

Since \(U \) is orthogonal,

\[
\| A x - b \|_2^2 = \| U \Sigma V^T x - b \|_2^2 = \| U(\Sigma V^T x - U^T b) \|_2^2 = \| \Sigma V^T x - U^T b \|_2^2 = \| \Sigma \xi - \beta \|_2^2
\]

where \(\xi = V^T x, \beta = U^T b \). Now

\[
\Sigma \xi - \beta = \begin{bmatrix}
\sigma_1 \xi_1 - \beta_1 \\
\vdots \\
\sigma_n \xi_n - \beta_n \\
-\beta_{n+1} \\
\vdots \\
-\beta_m
\end{bmatrix}
\]

Thus

\[
\min_{x \in \mathbb{R}^n} \| A x - b \|_2 = \sqrt{\sum_{i=n+1}^{m} \beta_i^2} = \sqrt{\sum_{i=n+1}^{m} (u_i^T b)^2},
\]

which is achieved for

\[
\xi = \begin{bmatrix}
\beta_1 / \sigma_1 \\
\vdots \\
\beta_n / \sigma_n
\end{bmatrix} \quad \text{equivalently,} \quad x = \sum_{i=1}^{n} \frac{u_i^T b}{\sigma_i} v_i.
\]

3. Lower rank approximation to \(A_{m \times n} \)

Define

\[
A_k = U \begin{bmatrix}
\Sigma_k & 0 \\
0 & 0
\end{bmatrix} V^T
\]
where
\[\Sigma_k = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_k \end{bmatrix}. \]

Note that \(A_k \) is a rank \(k \) approximation to \(A \) (assuming \(k < r \)), and it should have good accuracy if the omitted singular values of \(A \) (i.e., \(\sigma_{k+1}, \ldots, \sigma_r \)) are small.

Observe that \(A_k \) has an alternative representation:
\[A_k = U_k \Sigma_k V_k^T \]
where
\[U_k = [u_1, \ldots, u_k]_{m \times k} \]
\[V_k = [v_1, \ldots, v_k]_{n \times k} \]
and that the total storage requirement for \(U_k, \Sigma_k, V_k \) is \((m + n + 1)k\) vs. \(mn \) for \(A \) (or \(A_k \) in non-factored form). If \(k \ll \min\{m, n\} \) this can be an important saving. One application is image compression/coarsening (e.g., \(A = \) color-coded array of pixels).

Accuracy of \(A_k \) in 2-norm and Frobenius norm:
\[\| A - A_k \|_2 = \| U \left(\Sigma - \begin{bmatrix} \Sigma_k \\ 0 \\ 0 \end{bmatrix} \right) V^T \|_2 \]
\[= \| \Sigma - \begin{bmatrix} \Sigma_k \\ 0 \\ 0 \end{bmatrix} \|_2 \]
\[= \sigma_{k+1} \]
\[\| A - A_k \|_F = \| U \left(\Sigma - \begin{bmatrix} \Sigma_k \\ 0 \\ 0 \end{bmatrix} \right) V^T \|_F \]
\[= \| \Sigma - \begin{bmatrix} \Sigma_k \\ 0 \\ 0 \end{bmatrix} \|_F \]
\[= \sqrt{\sigma_{k+1}^2 + \cdots + \sigma_r^2} \]

Claim: \(A_k \) minimizes both \(\| A - B \|_2, \| A - B \|_F \) over all rank \(k \) matrices \(B \). (See Golub & Van Loan for proof.)

4. Orthogonal regression (also known as principle component analysis)
Suppose we have \(m \) data points \(\{x_i\}_{i=1}^m \) in \(\mathbb{R}^n \), \(m > n \), and we wish to fit them by a \(k \)-dimensional hyperplane \(H_k \):
\[H_k = x^* + S_k. \]
Here \(x^* \) is a point in \(\mathbb{R}^n \) and \(S_k \) denotes a \(k \)-dimensional subspace of \(\mathbb{R}^n \). The goal is to choose \(x^* \) and \(S_k \) to minimize \(\sum_{i=1}^m d_i^2 \) where \(d_i \) is the orthogonal distance from \(x_i \) to \(H_k \).

Example: \(n = 2 \), \(k = 1 \). In this case, \(H_k \) becomes
\[H_1 = \left\{ \left(\begin{array}{c} x_1^* \\ x_2^* \end{array} \right) + c_1 q_1 \right\} \]
where q_1 is a unit vector in \mathbb{R}^2. Thus we are fitting m points in 2-space by a straight line, with distances measured orthogonally (as opposed to vertically as in the case of least squares approximation).

Solution, in general:

$$x^* = \frac{1}{m} \sum_{i=1}^{m} x_i \quad \text{(the mean of the data points)}.$$

To determine S_k, form $A_{m \times n}$ with rows representing the data points $x_i - x_i^*$, and compute its SVD.

Then $S_k = \text{span}\{v_1, ..., v_k\}$.

5. Web search

Suppose, as result of a keyword search, we have n potentially relevant web pages $P_1, ..., P_n$. Which ones to report back to user? How to rank them? Useful technique: analyze link structure via SVD...

$$G = (V, E) \quad \text{(graph representing links)}$$

$$V = \{1, ..., n\} \quad \text{(vertex i represents P_i)}$$

$$E = \{ij \mid P_i \text{ points to } P_j\} \quad \text{(edges)}$$

The corresponding adjacency matrix, denoted by $M_{n \times n}$, has as its i,jth element

$$m_{i,j} = \begin{cases} 1, & \text{if } ij \in E, \\ 0, & \text{if } ij \notin E. \end{cases}$$

For any given subset of vertices $S \subset V$, there is a corresponding set of links T to other vertices.

We describe sets S, T in terms of vectors $x, y \in \mathbb{R}^n$ defined by

$$x_i = \begin{cases} 1, & i \in S, \\ 0, & \text{otherwise}, \end{cases}$$

$$y_j = \text{number of edges from } S \text{ to vertex } j.$$

Note that $y_j = \sum_{i \in S} a_{i,j} = \sum_{i=1}^{n} x_i a_{i,j}$. Thus $y^T = x^T A$; equivalently, $y = A^T x$. This suggests the possibility of using an SVD of A^T in order to summarize the primary information content of G in a condensed form.

Let $A = U \Sigma V^T$ be the SVD of A, in which case $A^T = V \Sigma U^T$ is the SVD of A^T. The dominant modes in the transformation $A^T x = y$ are then given by:

$$A^T u_1 = \sigma_1 v_1$$

$$A^T u_2 = \sigma_2 v_2$$

$$\ldots$$

What we are looking for is a rapid decay in the σ_i's so all but the first few are negligible.. The entries of $v_1, v_2, ...$ yield “authority weights” for web pages $P_1, P_2, ...$ with respect to the given keyword. The vectors $u_1, u_2, ...$ furnish a corresponding set of “hub weights”.

7