The objective of this assignment is to write a general MATLAB program for computing real roots of polynomials via Newton’s method, and then apply it to a particular polynomial.

Guidelines for program
(i) Write a MATLAB function $[p, pprime] = poly(a, z)$, say, which evaluates

$$p(x) = a_1x^n + \cdots + a_nx + a_{n+1}$$

and its first derivative at $x = z$, returning the values $p(z)$ and $p'(z)$ in p and $pprime$. The evaluation should be based on nested multiplication, as described below. Place this function in a separate file `poly.m`, say. Note: There is no need to pass n as an argument to `poly` - it can be obtained within `poly` via the Matlab function `length`. (Type `help length` for more information.)

(ii) The main program should be placed in a file `newton.m`, say. It should:

A. Read in as data...

 the coefficients of the polynomial whose roots are to be computed
 two parameters `abserr` and `itmax` explained in (iii)
 initial guesses for Newton’s method

B. Apply Newton’s method to $p(x)$ for each initial guess, and print out the following table of iterates and f values:

<table>
<thead>
<tr>
<th>x_k</th>
<th>$f(x_k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>~</td>
<td>~</td>
</tr>
<tr>
<td>~</td>
<td>~</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>

(iii) Stopping criteria for Newton’s method:

$$|x_k - x_{k-1}| < abserr \quad \text{(success)}$$

$$k > itmax \quad \text{(failure)}$$

As a debugging check, apply your program to the example problem we used in class: $x^2 - 2 = 0$, $x_0 = 1$.

Once you are confident your program is working properly, apply it to the problem of computing the real roots of

$$p(x) = 98x^4 - 280x^3 + 235x^2 - 78x + 9$$

to within absolute error $< 10^{-12}$. Be sure to print your x_k’s with at least 12 digits to the right of the decimal point. Use the Matlab command `diary` to save the output from your program. (Type `help diary` for more information.) Obtain your initial iterates from a plot of $p(x)$ vs. x - `poly.m` can be used for this purpose.
Turn in copies of your program and output, including the plot you used to obtain initial iterates. What are your approximations to the roots of $p(x)$? For each root you converge to, draw (by hand) the corresponding “staircase” showing the progress of the iteration, and identify the convergence rate. Do you believe you obtained the requested 10^{-12} accuracy in your approximations to the roots? Explain.

Note: If α is a multiple root of $p(x)$ (i.e., $p(x)$ contains $(x - \alpha)^m$ as a factor where $m \geq 2$), then $p'(\alpha) = 0$. If α is a single root, then $p'(\alpha) \neq 0$.

Write $p(x)$ in “nested” form:

$$p(x) = (a_{n+1} + x(a_n + x(a_{n-1} + \cdots + x(a_2 + x a_1) \cdots))).$$

Evaluating at $x = z$ starting from the innermost pair of parentheses, we obtain the following algorithm:

- $b_1 = a_1$
- for $k = 2 : n + 1$
 - $b_k = a_k + z \times b_{k-1}$
- Then $b_{n+1} = p(z)$.

This algorithm (known also as synthetic division or Horner’s rule) requires n multiplications and n additions compared with $2n - 1$ multiplications and n additions for “direct” evaluation of $p(z)$.

Schematic description of algorithm for evaluating $p(z)$:

\[
\begin{array}{cccccccc}
| & a_1 & a_2 & \cdots & a_{n-1} & a_n & a_{n+1} & \\
\hline
& zb_1 & zb_{n-2} & zb_{n-1} & zb_n & \\
& b_1 & b_2 & \cdots & b_{n-1} & b_n & [b_{n+1} = p(z)] & \\
\end{array}
\]

Now suppose $p'(z)$ is also desired. Then use the b_k’s from above to form

$$q(x) \equiv b_1 x^{n-1} + \cdots + b_{n-1} x + b_n.$$

One may verify that $q(x)$ and b_0 are the quotient and remainder when $p(x)$ is divided by $x - z$, i.e.,

$$p(x) = (x - z) q(x) + b_0.$$

Differentiating this representation for $p(x)$ and evaluating at $x = z$, we see that $p'(z) = q(z)$. Thus $p'(z)$ can be gotten by applying the nested multiplication algorithm to $q(x)$. Moreover, from the standpoint of the schema, the b_k’s are laid out in just the right way for doing this.
Schematic description of algorithm for evaluating $p(z)$, $p'(z)$:

\[
\begin{array}{cccccc}
 z & a_1 & a_2 & \cdots & a_{n-1} & a_n & a_{n+1} \\
 & zb_1 & zb_{n-2} & zb_{n-1} & zb_n \\
 z & b_1 & b_2 & \cdots & b_{n-1} & b_n & b_{n+1} \\
 &zc_1 & zc_{n-2} & zc_{n-1} \\
 & c_1 & c_2 & \cdots & c_{n-1} & c_n \\
\end{array}
\]

$b_{n+1} = p(z)$

The following algorithm evaluates both $p(z)$ and $p'(z)$:

\[
\begin{align*}
b_1 &= a_1 \\
\text{for } k &= 2 : n + 1 \\
b_k &= a_k + z \cdot b_{k-1} \\
c_1 &= b_1 \\
\text{for } k &= 2 : n \\
c_k &= b_k + z \cdot c_{k-1}
\end{align*}
\]

Then $p(z) = b_{n+1}$ and $p'(z) = c_n$.