
1

One problem that is not addressed by firewalls, secure communications, and by
the operating system itself is: what safeguards can we impose when we want to
run someone else’s software?
The general model today is that of trust: you trust the software that you install.
If you get it from a store, you trust the vendor not to do anything malicious and
trust the integrity of the package because it is shrink wrapped. If you get the
software from the web, you trust it because you downloaded it from a web site
that you authenticated (with an X.509 digital certificate provided by the site during
the SSL handshake).
You may rely on limiting the damage that a program can do by relying on the
operating system to run it under a particular user ID (yours, most often) and
having the operating system have appropriate access permissions set for the
various resources it offers. This is particularly ineffective on most Microsoft
Wi d i t ll ti h ll i th l d i i t tiWindows installations where users generally give themselves administartive
privileges.
You may also choose to run a virus scan on the software to see if it has been
modified with one of many known viruses. This, of course, does not ensure that
the software doesn’t contain new viruses or that it contains defects or malicious
code that can impact your system or the integrity of its resources.
Th d thi ft i ’t d h W ld lik t h ft h

2

These days, this often isn’t good enough. We would like to have software where
we can validate that it was not tampered with and we may like to have certain
software run in a more restrictive environment - so it cannot access certain
resources.
Java is the first widely-used programming language/operating environment (we
need both) to offer support for executing trusted and untrusted software, so we’ll
look at that as a case study

One motivation for having trusted code is that software development has migrated to a
di t ib t d d l t i t A li ti di id d i t i (t)distributed development environment. Applications are divided into pieces (components).
These components may exist in different locations and code may be downloaded from these
remote machines, often during run-time.

With binary code (compiled machine code), it is generally rather difficult to inspect or restrict
operations as in an interpreted language like Java. The host can exercise only limited control
on binary modules. Most operating systems only support the concept of software running
with the permissions of a particular “user” rather than a broader model where you can havewith the permissions of a particular user rather than a broader model where you can have
“sub-users” with permissions more restricted than those of the main user. Moreover, most
operating systems will run the entire program with one set of permissions - dynamically
linked libraries from different sources and the user’s code are executed alike and have the
same access to system resources.
--

3

Microsoft’s Authenticode technology is simply a specification for affixing a digital signature to
bl k f d (th t i t i ll d l d d t k) Th i t lid ta block of code (that is typically downloaded over a network). The signature validates

that the code was not modified since the signature was affixed and that it came from the
signatory.

Authenticode works on various binary formats, such as dll, exe, cab, ocx, and class files.

The steps in creating a signed file are:p g g
1. Generate a public/private key pair (this is something the organization does once)
2. Get a digital certificate. A digital certificate is just a public key + identification credentials,

signed (has the data and encrypt it with a private key) by a trusted party. In this case,
the trusted party is VeriSign - a class 3 Commercial Software Publisher’s certificate
(again, this is done once by the organization).

3. Generate a hash of the code to create a fixed-length digest.
4 Encrypt the digest with the private key4. Encrypt the digest with the private key.
5. Combine the encrypted digest with the certificate into a structure known as the

Signature block.
6. Embed this in the executable.
The recipient (client side) can call the Win32 function called WinVerifyTrust to validate the

signature. This validates the certificate, decrypts the digest using the public key in the
certificate and compares it with the hash of the downloaded code.

4

5

Refresher: Java applets are (generally small) executable programs
embedded in Java-aware web pages. They are downloaded and executed
locally by the browser. This allows web publishers to provide applications as
part of their web pages.
Java applets have been a major motivating factor for the early popularity of
Java.
They are also a key area where you want to have code security: just by
connecting to a web site, you may end up executing code on your machine!
--

6

Java security is provided through a technique called “sandboxing” (we’ll get
to that in the next slide). The main components of the Java sandbox are:

- class loader - this fetches and instantiates classes from remote systems

- byte-code verifier - this tries to validate the code to see that it conforms to
the “rules of Java”the rules of Java

- security manager - this is the run-time component that validates access to
system resources
--

7

Webster’s defines a sandbox as a box that contains sand for children to play in. In operating
t db i “b ” h d l i A db i h i fsystems, a sandbox is a “box” where code can play in. A sandbox is a mechanism for

providing restrictions on what software can and cannot do in terms of accessing memory,
programs, threads, files, and other operating system resources.
Users can download and execute untrusted applications in a sandbox, limiting their risk
since the sandbox will impose restrictions on what the application can do.
The sandbox allows us to bring untrusted applications into a trusted environment without
compromising the environment.
--

8

Java source code is compiled into platform-independent byte-codes which
are interpreted by the Java Virtual Machine (JVM) (instead of compiling to
the machine’s native instructions where they can be executed directly by the
system processor).
The byte-code verifier is the first line of defense in the Java security model.
Before a class loader allows any applet to execute, the code is first verified
by a byte-code verifier. It:
- ensures that the code adheres to the rules of the language - for example:
only valid JVM opcodes are used with only the allowed arguments

- applies a built-in theorem prover against the code. This tries to predict code
execution paths and ensures that the software does not:

forge pointersforge pointers
circumvent access restrictions
access objects through illegal casting

--

9

Between the byte-code verifier and the features built into the JVM interpreter,
the system tries to ensure that:

- compiled code is in the right format and adheres to the language
specification
- internal stacks will not overflow/underflow

no illegal data conversions will occur (e g integers cannot serve as- no illegal data conversions will occur (e.g., integers cannot serve as
pointers) -- it ensures that variables cannot access restricted memory areas.
- byte-code instructions will have parameters of the right type
- all class member accesses are legal - private data remains private
--

10

To load an applet, the browser invokes the Java Applet Class Loader. It determines how and
h l t l d lwhen applets can load classes.

Its major functions are:

- it fetches an applet’s code from the remote machine

- it creates and enforces a namespace (more on this later) for each applet

- it prevents applets from invoking methods that are part of the system’s class loader (you
don’t want applets loading other applets)
--

11

The Applet Class Loader creates a new namespace for each applet. Hence,
applets can access only their own classes and the standard Java library API.
They cannot access any classes belonging to other applets.

The advantages of this are:
- separate namespaces make it difficult for applets to pool their resources to
form a concerted attackform a concerted attack.
- applet developers need not be concerned about name collisions
--

12

The security manager is responsible for run-time verification of “dangerous
methods” - methods that request file I/O, network access, or defining a new
class loader.
It keeps track of who is allowed to do which dangerous operations.
A security manager can choose what accesses are permitted and generate a
SecurityException for those that it decides should not be permitted (look
through the JDK API -- any methods that can throw a SecurityException are
those where the Security Manager intervenes).
In general, the Security Manager can be a replaceable component that can
be as complex as the authors want it to be.
Code in the Java library consults a security manager when a potentially
dangerous operation is attempted.
Security checking code examines the run-time stack for frames executingSecurity checking code examines the run time stack for frames executing
untrusted code (each thread has its own stack). This process is known as
stack inspection. All major Java vendors have adopted stack inspection.
The stack frames are searched from newest to oldest. If an untrusted one is
encountered, the security manager defaults to that level of trust (untrust).
--

13

This summarizes the operations in the Java sandbox. User-compiled code is
considered “trusted code”. By default, remote code is considered “untrusted”.
All Java byte code, except that from the JDK libraries is verified with the
byte-code verifier. The class loader than allows the namespace of the class
to be instantiated and for the class to be executable. At that time the security
manager takes over for run-time intervention on operations that the code
wants to perform.
--

14

Since JDK 1.1, Java added a JavaSecurity API. This provides a broad set of
methods for

digital signatures
message digests
key management (support for X.509 digital certificates)
access control lists

--

15

When we download software from a trusted source, we need to ensure that it
has not been modified by some interceptor. Such a modification is called a
“man-in-the-middle” attack. This middleman manages to get in the
communication path and simply forwards data between client and server and
vice versa. At times, however, he may choose to modify the data. In
downloading code, the client may successfully authenticate with the server,
even with a middleman, but the downloaded code may still be corrupted.
--

16

To guard against this man-in-the-middle attack, digital signatures can be
used.
Java code and any related files can be bundled into a JAR (Java archive
format). This resultant applet (jar file) is then digitally signed:

- add a hash encrypted by the supplier’s private key
- add identification information about the supplier

The client can verify the authenticity of the code by using the supplier’s
digital certificate (it contains the public key that may be used to decrypt the
hash and validate it).
Since Java 1.1, a signed applet can be considered “trusted” and be given
access to more resources (on a per-supplier basis). For example, you may
choose to tr st all applets from the Microsoft corporationchoose to trust all applets from the Microsoft corporation.
--

17

The original Java sandbox (the only one available before Java 1.1, and still
the default for untrusted code) imposed a lot of restrictions on executing
software:
untrusted applets cannot read/write from/to the local disk.
All standalone windows created by applets are labeled as such so that users
are aware of this when entering data (an applet cannot disguise itself as a
terminal window, for example).
An applet was not allowed to establish network connections to any system
other than the originating host.
Much more …. See the slide
--

18

This complete sandbox proved to be too restrictive for some applications.
With Java 1.1, the JavaSecurity API was provided to allow one to create and authenticate
signed classes. A user can designate trusted parties. Classes that are signed and loaded
from any of these trusted parties will become trusted (just as a user’s own code). The model
is still one of complete trust or complete mistrust.

With Java 2, a multi-tiered approach to security was adopted where users can create and
manage security policies and treat programs according to their trust level. Some examples

f it th t b t ll dof items that can be controlled are:
- restricted access to file systems and network
- restricted access to browser internals
- use the byte-code verifier
Digitally signed classes can therefore be considered “partially trusted” (under user control).
Privileges can be granted when they’re needed. At other times, the code can operate with
the minimum necessary privileges (“principle of least privilege”).y p g (p p p g)
Summary
Sandboxing proved to be a more elusive problem than originally anticipated. The Java
sandbox was not (and is not) foolproof and countless attacks were found to penetrate it. It
has been improved over time, but run-time security remains a problematic issue.
--

19

20

