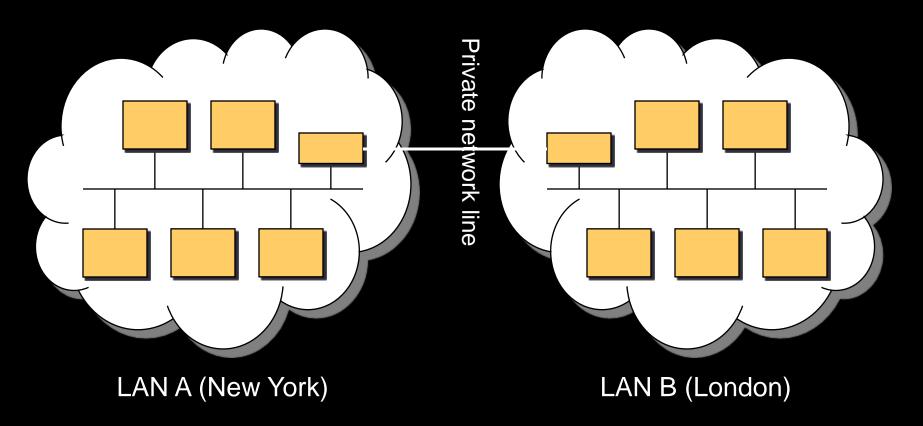
Distributed Systems

Virtual Private Networks

Paul Krzyzanowski pxk@cs.rutgers.edu

Except as otherwise noted, the content of this presentation is licensed under the Creative Commons Attribution 2.5 License.

Private networks


Problem

 You have several geographically separated local area networks that you would like to have connected securely

Solution

- Set up a private network line between the locations
- Routers on either side will be enabled to route packets over this private line

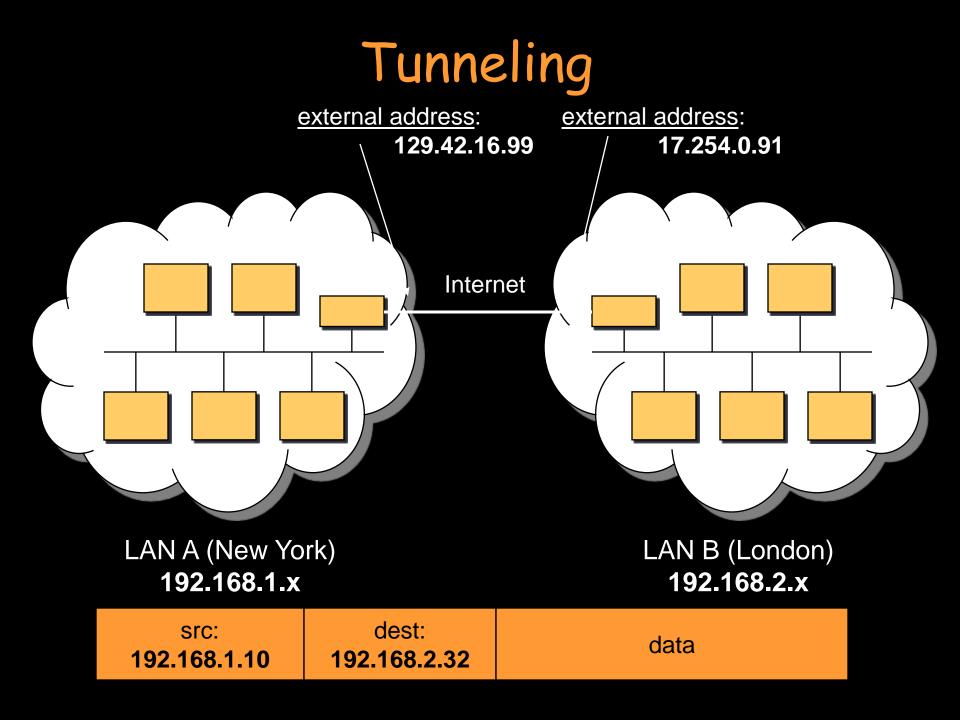
Private networks

Problem: \$\$\$¥¥¥£££€€€<!

Virtual private networks (VPNs)

Alternative to private networks

- Use the public network (internet)


Service appears to users as if they were connected directly over a private network

 Public infrastructure is used in the connection

Building a VPN: tunneling

Tunneling

- Links two network devices such that the devices appear to exist on a common, private backbone
- Achieve it with encapsulation of network packets

LAN A (New York) 192.168.1.x

Internet

external address: **129.42.16.99**

LAN B (London) **192.168.2.x**

> external address: 17.254.0.91

- route packets for 192.168.2.x to VPN router
- envelope packet
- send it to remote router

src: 129.42.16.99	dest: 17.254.0.91	src: 192.168.1.10	dest: 192.168.2.32	data

Internet

external address: **129.42.16.99**

LAN B (London) 192.168.2.x

external address: 17.254.0.91

-accept packets from 129.42.16.99-extract data (original IP packet)-send on local network

src:	dest:	src:	dest:	data
129.42.16.99	17.254.0.91	192.168.1.10	192.168.2.32	

Building a VPN: tunneling

Operation

- LAN-1 and LAN-2 each expose a single outside address and port.
- A machine in the DMZ (typically running firewall software) listens on this address and port
- On LAN-1, any packets addressed to LAN-2 are routed to this system.
 - VPN software takes the entire packet that is destined for LAN-2 and, treating it as data, sends it over an established TCP/IP connection to the listener on LAN-2
- On LAN-2, the software extracts the data (the entire packet) and sends it out on its local area network

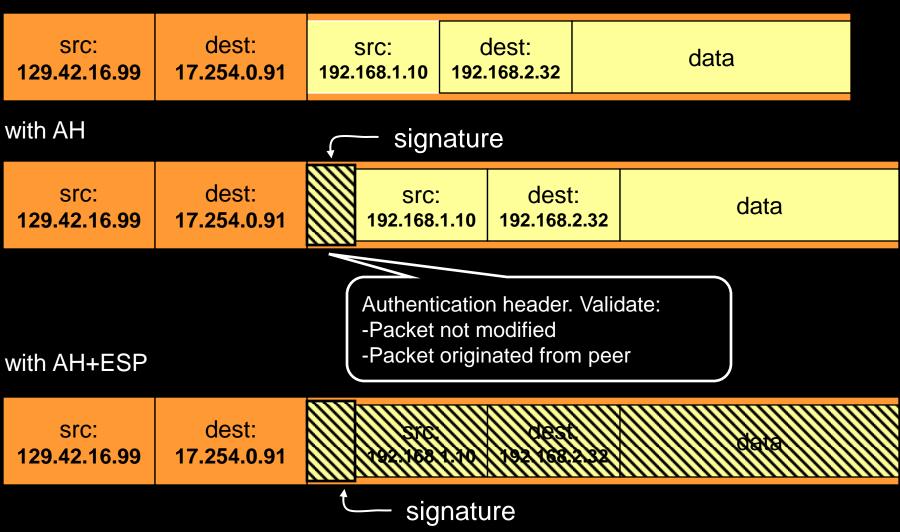
Building a VPN: security

No need to make all machines in the local area networks accessible to the public network ... just the router

BUT... an intruder can:

- examine the encapsulated packets
- forge new encapsulated packet

Solution:


- encrypt the encapsulated packets
 - Symmetric algorithm for encryption using session key
- need mechanism for key exchange

IPSEC: RFC 1825, 1827

- IP-layer security mechanism
- Covers authentication and encryption
- Application gets benefits of network encryption without modification
- Additional header added to packet:
 - IP Authentication header
 - Identifies proper source and destination basis of point-topoint authentication
 - Signature for IP header
- Encapsulating Security Protocol (ESP)
 - Tunnel mode: encrypt entire IP packet (data and IP/TCP/UDP headers)
 - or Transport mode: encrypt only IP/TCP/UDP headers (faster)
- Encryption via RC4. DES. DES3, or IDEA
- Key management: manual, Diffie-Hellman, or RSA

simple tunnel

PPTP

- PPTP: point-to-point tunneling protocol
- Extension to PPP developed by Microsoft
- Encapsulates IP, IPX, NetBEUI
- Conceptually similar to IPSEC
 - Flawed security

The end