Firewalls: Defending the Network

Paul Krzyzanowski
pxk@cs.rutgers.edu

Distributed Systems

inetd

Most UNIX systems ran a large number of tcp services as daemons
- e.g., rlogin, rsh, telnet, ftp, finger, talk, ...

Later, one process, **inetd**, was created to listen to a set of ports and then spawn the service on demand
- pass sockets as standard in/standard out file descriptors
- servers don't run unless they are in use

TCP wrappers (**tcpd**)

- Plug-in replacement to **inetd**
- Restrict access to TCP services
 - Allow only specified machines to execute authorized services
 - Monitor and log requests
- Specify rules in two files:
 - **hosts.allow** and **hosts.deny**
 - access:
 - grant access if service:client in /etc/hosts.allow
 - deny access if service:client in /etc/hosts.deny
 - otherwise allow access
- support for booby traps (**honeypots**)

Firewalls

Isolate trusted domain of machines from the rest of the untrusted world
- move all machines into a private network
- disconnect all other systems
- untrusted users not allowed

not acceptable - we want to be connected

Solution:
- protect the junction between a trusted internal network of computers from an external network with a **firewall**

Packet filtering

- Selective routing of packets
 - Between internal and external hosts
- By routers, kernel modules, or firewall software
- Allow or block certain types of packets

Screening router
- determine route and decide whether the packet should be routed
Packet filtering: screening router

Filter by:
- IP source address, IP destination address
- TCP/UDP source port, TCP/UDP destination port
- Protocol (TCP, UDP, ICMP, …)
- ICMP message type
- Interface packet arrives on
- Destination interface

Allow or block packets based on any/all fields
- Block any connections from certain systems
- Disallow access to "dangerous services"

Packet filtering

Stateless inspection
- filter maintains no state
- each packet examined on its own

Stateful inspection
- keep track of TCP connections
 (SYN, SYN/ACK packets)
 - e.g. no rogue packets when connection has not been established
- "related" ports: allow data ports to be opened for FTP sessions
- Port triggering (outbound port triggers other port access to be redirected to the originating system)
 - Generally used with NAT (Network Address Translation)
- limit rates of SYN packets
 - avoid SYN flood attacks
- Other application-specific filtering
 - Drop connections based on pattern matching
 - Rewrite port numbers in data stream

Packet filtering: rules

Proxy services

- Application or server programs that run on firewall host
 - dual-homed host
 - bastion host
- Take requests for services and forward them to actual services
- Provide replacement connections and act as gateway services
- Application-level gateway

Stateful inspection and protocol validation
Proxy services

Proxies are effective in environments where direct communication is restricted between internal and external hosts
- dual-homed machines and packet filtering

Proxy example

Checkpoint Software Technologies’ Firewall-1 mail proxy:
- mail address translation: rewrite From:
- redirect To:
- drop mail from given address
- strip certain mime attachments
- strip Received info on outbound mail
- drop mail above given size
- perform anti-virus checks on attachments

does not allow outsiders direct connection to a local mailer

Dual-homed host architecture

- Built around dual-homed host computer
- Disable ability to route between networks
 - packets from Internet are not routed directly to the internal network
 - services provided by proxy
 - users log into dual-homed host to access Internet
 - user accounts present security problems

Screened host architecture

- Provides services from a host attached to internal network
- Security provided by packet filtering
 - only certain operations allowed (e.g. deliver email)
 - outside connections can only go to bastion host
- allow internal hosts to originate connections over Internet
- if bastion host is compromised...

Screened subnet architecture

Add extra level of isolation for internal network
- Place any externally visible machines on a separate perimeter network (DMZ)

Screened subnet architecture

Exterior router (access router)
- protects DMZ and internal network from Internet
- generally... allow anything outbound... that you need
- block incoming packets from Internet that have forged source addresses
- allow incoming traffic only for bastion hosts/services.

Interior router (choke router)
- protects internal network from Internet and DMZ
- does most of packet filtering for firewall
- allows selected outbound services from internal network
- limit services between bastion host and internal network
Single router DMZ

Internet

exterior router

Interface 1

Internal

Interface 2

DMZ

DMZ network

bastion hosts

externally-visible services

internal network

internal machines

Firewalling principles

• It is easier to secure one or a few machines than a huge number of machines on a LAN
• Focus effort on bastion host(s) since only they are accessible from the external network
• All traffic between outside and inside must pass through a firewall
• Deny overall
 • Turn everything off, then allow only what you need
• Private network should never see security attacks
• Be prepared for attacks from within
 • Infected machines

The end