### Distributed Systems

Protection & Security

Paul Krzyzanowski pxk@cs.rutgers.edu

Except as otherwise noted, the content of this presentation is licensed under the Creative Commons Attribution 2.5 License,

### You need to get into a vault

- · Try all combinations.
- · Try a subset of combinations.
- Exploit weaknesses in the lock's design.
- · Open the door (drilling, torch, ...).
- · Back-door access: walls, ceiling, floor.
- Observe someone else opening
   note the combination.

### What can the bank do?

- · Install a better lock
  - What if theirs is already good?
- Restrict physical access to the vault (guards)
  - You can still use some methods
- · Make the contents of the vault less appealing
  - Store extra cash, valuables off-site
  - This just shifts the problem
- · Impose strict policies on whom to trust
- · Impose strict policies on how the combination is stored
  - Policies can be broken

### You need to get into a vault

- · Ask someone for the combination.
  - Convince them that they should give it.
  - Force it (gunpoint/threat).
- · Convince someone to let you in
- · Find a combination lying around
- Steal a computer or file folder that has the combination.
- · Look through the trash

Firewalls and System Protection

### Computer security... then

Issue from the dawn of computing:

- · Colossus at Bletchley Park: breaking codes
- · ENIAC at Moore School: ballistic firing tables
- · single-user, single-process systems
- · data security needed
- physical security



### Computer security... now

- · Sensitive data of different users lives on the same file servers
- · Multiple processes on same machine
- · Authentication and transactions over network
  - open for snooping
- · We might want to run other people's code in our process space
  - Device drivers, media managers
  - Java applets, games
  - not just from trusted organizations

### Systems are easier to attack

### **Automation**

- Data gathering
- Mass mailings

### Distance

- Attack from your own home

### Sharing techniques

- Virus kits
- Hacking tools

### **Attacks**

- Fraud
- Destructive
- · Intellectual Property Theft
- · Identity Theft
- · Brand Theft
  - VISA condoms
  - 1-800-COLLECT, 1-800-COLLECT
  - 1-800-OPERATOR, 1-800-OPERATER
- Surveillance
- · Traffic Analysis
- Publicity
- · Denial of Service

### Cryptographic attacks

- Ciphertext-only attack
   Recover plaintext given ciphertext
  - Almost never occurs: too difficult
  - Brute force
  - Exploit weaknesses in algorithms or in passwords

### Known plaintext attack

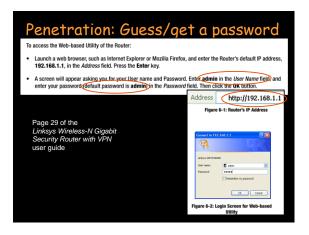
- Analyst has copy of plaintext & ciphertextE.g., Norway saying "Nothing to report"

### Chosen plaintext attack

- Analyst chooses message that gets encrypted E.g., start military activity in town with obscure name

### Protocol attacks

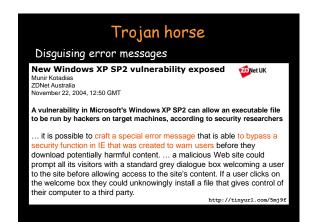
- Eavesdropping
- · Active attacks
  - Insert, delete, change messages
- · Man-in-the-middle attack
  - Eavesdropper intercepts
- · Malicious host


### Penetration

### Guess a password

- system defaults, brute force, dictionary attack

### Crack a password


- Online vs offline
- Precomputed hashes (see rainbow tables)
  - · Defense: Salt





# Penetration Social engineering - people have a tendency to trust others - finger sites - deduce organizational structure - myspace.com, personal home pages - look through dumpsters for information - impersonate a user - Phishing: impersonate a company/service







### Malicious Files and Attachments

Take advantage of:

- Programs that automatically open attachments
- Systems that hide extensions yet use them to execute a program - trick the user

love-letter.txt.vbs

resume.doc.scr

### Exploiting bugs

### Exploit software bugs

- Most (all) software is buggy
- Big programs have lots of bugs
  - · sendmail, wu-ftp
- some big programs are *setuid* programs
  - · Ipr, uucp, sendmail, mount, mkdir, eject

### Common bugs

- buffer overflow (blindly read data into buffer)
- back doors and undocumented options

### The classic buffer overflow bug

```
gets.c from V6 Unix:
```

```
char *s;
{ /* gets (s) - read a string with cgetc and store in s */
     IEHzap("gets ");
  while ((*s = cgetc(cin)) != '\n' && *s != '\0')
  return (p);
```

### Buggy software

### ComputerWeekly.com

IT Management

Security

Sendmail hit by data interception flaw

ternet security researchers have discovered a serious flaw in versions of the widely-used endmail open-source e-mail software.

The flaw could allow remote attackers to take control of users' PCs. To enable this to happen, attackers would have to send malicious code at carefully planned time intervals to an SMTP mail server....

sendmail has been around since 1983!

## Buggy software

### **InformationWeek**

### Hackers Promise 'Nude Britney Spears' Pix To Plant .ANI Exploit

April 4, 2007 The lure? The e-mails are promising users nude pictures of pop star Britney Spears if they follow the link to a Web site. Initially, the e-mails only contained text, but in the past day or so they've begun to contain an embedded image of a scantily clad Spears.

Sophos reported in an advisory that the malicious site contains the Iffy-A Trojan that points to another piece of malware, which contains the zero-day .ANI exploit. Sophos detects this Trojan as Animoo-L.

The .ANI vulnerability involves the way Windows handles animated cursor files and could enable a hacker to remotely take control of an infected system. The bug affects all the recent Windows releases, including its new Vista operating system. Internet Explorer is the main attack vector for the exploit s.

Microsoft: Vista Most Secure OS Ever!

http://tinyurl.com/yvxv4h

## Buggy software

# The A Register

### Caching bugs exposed in second biggest DNS server

Birthday Paradox stumps djbdns By Dan Goodin in San Francisco

Posted in Enterprise Security, 28th February 2009 01:14 GMT

Now it could be time to pay up, as researchers said they've uncovered several vulnerabilities in the package that could lead end users to fraudulent addresses under the control of attackers.

djbdns is believed to be the second most popular DNS program, behind Bind. The bugs show that even the most secure DNS packages are suscept ble to attacks that could visit chaos on those who use them.

One of the bugs, disclosed last week by researcher Kevin Day, exploits a known vulnerability in the DNS system that allows attackers to poison domain name system caches by flooding a server with multiple requests for the same address.

DNS bug!

http://tinyurl.com/dclq9b

### Buggy software

Microsoft Security Advisory (927892)

Vulnerability in Microsoft XML Core Services Could Allow Remote Code Execution

Microsoft is investigating public reports of a vulnerability in the XMLHTTP 4.0 ActiveX Control, part of Microsoft XML Core Services 4.0 on Windows. We are aware of limited attacks that are attempting to use the reported vulnerability.

http://www.microsoft.com/technet/security/advisory/927892.mspx

### Buggy Software

### TIFF exploits for iPhone Safari, Mail released

By Justin Berka | Published: October 18, 2007 - 08:21AM CT

One of the big questions surrounding the iPhone has been just how secure the device is. Apple has already fixed some security issues, and the upcoming iPhone SDK may introduce more of the vulnerabilities Steve Jobs was loath to avoid. In the meantime, hacker HD Moore has released details about the TIFF-based exploits for MobileSafari and MobileMail as part of the Metasploit Framework.

Although the explanation of the code looks like a lot of scary memory addresses, the basic point of the exploit is that, because of the vulnerability, a TIFF file can be crafted to include a malicious payload that can be run on an iPhone. The exploit can be triggered from MobileSafari and MobileMail, and works on any version of the iPhone so far.

### Mistakes (?)

### HP admits to selling infected flash-floppy drives

Hybrid devices for ProLiant servers pre-infected with worms, HP says

Hewlett-Packard has been selling USB-based hybrid flash-floppy drives that were pre-infected with malware, the company said last week in a

Dubbed "HP USB Floppy Drive Key," the device is a combination flash drive and compact floppy drive, and is designed to work with various models of HP's ProLiant Server line. HP sells two versions of the drive, one with 256MB of flash capacity, the other with 1GB of storage space.

Seriously bad when combined with Windows' autorun when a USB drive is plugged in!

- This feature cannot be disabled easily

http://tinyurl.com/5sddlg

### Penetration: the network

# Fake ICMP, RIP packets (router information protocol)

### Address spoofing

- Fake a server to believe it's talking to a trusted machine

### ARP cache poisoning

- No authentication in ARP; blindly trust replies
- Malicious host can provide its own Ethernet address for another machine.

### Penetration: the network

### Session hijacking

- sequence number attack: fake source address and TCP sequence number responses

### Penetration

### UDP

- no handshakes, no sequence numbers
- easy to spoof

### Penetration

### Many network services have holes

- fake email with SMTP
- sendmail bugs
- snoop on telnet sessions
- finger
  - · old versions have gets buffer overflow
  - · social engineering
- unauthenticated RPC
  - · access remote procedures
  - fake *portmapper*, causing your programs to run instead of real service

### Penetration

### ΙE

- · Malformed URLs
- Buffer overflows
- · ActiveX flaws
- · PNG display bugs
- Jscript
- · Processing of XML object data tags
- Registry modification to redirect URLs

### Penetration

### NFS

- stateless design
- once you have a file handle, you can access files or mount the file system in the future
- data not encrypted

### rlogin, rsh

- modify .rhosts or /etc/hosts.equiv
- snoop on session
- fake your machine or user name to take advantage of .rhosts

### Penetration

- - tap into server connection (port 6000+small int) [hard!] • get key strokes, contents of display

    Remote administration servers

    - E.g. Microsoft BackOffice

- Java applets Visual Basic scripts
- Shell script bugs URL hacking
- et cetera, et cetera ....

### Denial of Service (DoS)

### Ping of death

take a machine out of service

- IP datagram > 65535 bytes is illegal but possible to create
- Reassembly of packets causes buffer overflow on some systems

### Denial of Service: SYN Flooding

SYN flooding take a machine out of service

### Background:

- 3-way handshake to set up TCP connection
  - 1. Send SYN packet
    - receiver allocates resources limit to number of connections
    - new connections go to backlog queue - further SYN packets get dropped
  - 2. Receiver sends acknowledgement (SYN/ACK) and waits for an ACK
  - 3. Sender sends ACK

### Denial of Service: SYN Flooding

- Send SYN masqueraded to come from an unreachable host
  - receiver times tries to send SYN/ACK
  - times out eventually
    - · 23 minutes on old Linux systems
    - BSD uses a Maximum Segment Life = 7.5 sec
    - · Windows server 2003 recommends 120 sec.

### Denial of Service and DDoS

- · Other denial of service attacks:
  - Software bugs (esp. OS)
  - ICMP floods
  - ICMP or RIP redirect messages to alter routes to imposter machines
  - UDP floods
  - application floods
- · Distributed Denial of Service (DDoS) attacks
  - Multiple compromised machines attack a system (e.g., MyDoom)

### Direct System Access

- · Boot alternate OS to bypass OS logins
  - E.g., Linux on a CD
- · Third-party drivers with backdoors or bugs
- · Then ... Modify system files
  - Encrypted file system can help
- · Roque administrators

### Worms

Type of process that spawns copies of itself

- potentially using system resources and hurting performance
- possibly exploiting weaknesses in the operating system to cause damage

### Example: 1988 Internet worm

Robert Tappan Morris Jr.'s Internet worm

- exploit finger's gets bug to load a small program (99 lines of C)
- program connects to sender and downloads the full worm
- worm searches for other machines:
  - · .rhost files
  - · finger daemon
  - · sendmail DEBUG mode
  - password guessing via dictionary attack: 432 common passwords and combinations of account name and user name

### Virus

- · Does not run as a self-contained process
- · code is attached onto another program or script
- · File infector
  - primarily a problem on systems without adequate protection mechanisms
- · Boot-sector
- · Macro (most common now...VB)
- Hypervisor
  - install on virtual machines (newest form of attack)

### Botnets

New Kraken worm evading harpoons of antivirus programs By Joel Hruska | Published: April 08, 2008 - 01:42PM CT

Researchers at Damballa Solutions have uncovered evidence of a powerful new botnet they've nicknamed Kracken. The company estimates that Kraken has infected 400,000 systems ....

Specific details on the newly discovered botnet are still hard to come by, but rhetoric isn't. Damballa currently predicts that Kraken will continue to infect new machines (up to 600,000 by mid-April). Compromised systems have been observed sending up to 500,000 emails a day, and 10 percent of the Fortune 500 are currently infected. The botnet appears to have multiple, redundant CnC (Command and Control) servers hosted in France, Russia, and the United States.

http://tinyurl.com/5y2x8g

### Penetration from within the system

- · Malicious software in your computer
  - Can access external systems
  - Internal network, data, other computers
- Dialers
  - Dial 900 number, alternate telephony provider, modify dialing preferences
  - Not interesting now that modems are practically extinct
- Remote access
- Adware
- Deliver ads via program or another program
- Spyware
  - Scan system, monitor activity
  - Key loggers

## Key loggers

- · Record every keystroke
- · Windows hook
  - Procedure to intercept message traffic before it reaches a target windows procedure
  - Can be chained
  - Installed via SetWindowsHookEx
  - WH\_KEYBOARD and WH\_MOUSE
    - · Capture key up, down events and mouse events
- Hardware loggers





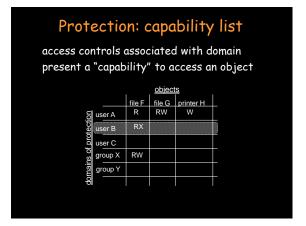
### Rootkits

- Replacement commands (or parts of O5) to hide the presence of an intruder
  - ps, ls, who, netstat, .
- Hide the presence of a user or additional software (backdoors, key loggers, sniffers
- OS can no longer be trusted!

E.g., Sony BMG DRM rootkit (October 2005)

- Creates hidden directory; installs several of its own device drivers; reroutes Windows system calls to its own routines
- Intercepts kernel-level APIs and disguises its presence with cloaking (hides \$sys\$ files)

### Dealing With Rootkits


- · Restrict permission to modify system files
- · Vista:
  - Requires kernel-mode software to have a digital signature (x64-based systems only)

**Protection Mechanisms** 

# Operating system protection Os and hardware give us some protection access to... CPU process scheduler memory MMU, page table per process peripherals device driver, buffer cache logical regions of persistent data communication networks sockets











### Authentication

# Identification & Network-safe authentication

- Cleartext passwords (PAP) bad idea
- One-time passwords
- Challenge-response

vulnerable to man-in-the-middle attacks

- Shared secret keys (distribution must be secure)

- Cleartext passwords are not network safe!

### Authentication

# Identification & Network-safe authentication

- Trusted third party
  - E.g., Kerberos tickets
- Public key authentication, certificates
- Source address validation (may be spoofed)
- Establish covert communication channel first
  - · Diffie Hellman common key
  - · Public keys
  - Kerberos
  - · ... then use cleartext passwords

### Identification versus Authentication

- · Identification:
  - Who are you?
  - User name, account number, ...
- · Authentication:
  - Prove it!
  - Password, PIN, encrypt nonce, ...
- · Biometrics
  - Identification: 1 out of many
    - · Who is this?
  - Authentication: 1:1
    - $\cdot$  Let me scan your fingerprint and validate it's you.

### ...versus Authorization

### Access Control

Once we know a user's identity:

- Allow/disallow request
- Operating system enforces system access based on user's credentials
  - $\boldsymbol{\cdot}$  Network services usually run in another context
  - $\cdot$  Network server may not know of the user
  - · Application takes responsibility
- Contact authorization server
  - · Trusted third party that will grant credentials
  - · Kerberos ticket granting service
  - · RADIUS (centralized authentication/authorization)

### Accounting

If security has been compromised

- ... what happened?
- ... who did it?
- ... how did they do it?

### Log transactions

- Logins
- Commands
- Database operations
- Who looks at audits?

### Log to remote systems

- Minimize chances for intruders to delete logs

### Network Access Control (NAC)

- Authenticate before the switch will route your packets
- · Common for Wi-Fi hotspots
- NAC sometimes uses ARP poisoning to relay ARP requests so that traffic will go through the gateway
- Query RADIUS or LDAP server to determine what a user is authorized to access

### Intrusion Detection

- External
  - Network activity
  - Network-application protocols
- Internal
  - Host-based

### **Network Intrusion Detection**

Examine traffic going through a network choke (hub, switch, or router)

- Software on device or routed through port mirroring

### Detect:

- Dangerous code (viruses, buffer overflow)
- Port scans (including stealth port scans)
- Web server attacks
- SMB probes
- Excess network traffic

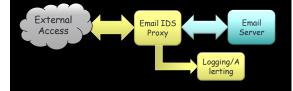
Log and/or drop packets that are deemed dangerous

### Testing an IP port

### TCP/IP:

Test by connect() call or sending a SYN packet

- Open (accepts connections
- Denied (host sends reply that connections will be denied)
- Dropped (no reply from host)


### UDP/IP

 Systems will often send ICMP packets as a reply informing you that a port is not in service

### Intrusion Detection Proxies

### Application-specific proxies

- Specific to a protocol
- Network interface to proxy instead of application



### Host-Based Intrusion Detection

- · Host-resident software
- · Analyze/log:
  - Virus signature scans
  - file changes
  - system call activity
  - logins
  - admin operations
  - changes to hosts file
  - installation of new drivers, new software, keyloggers
- Off-host logging is better
- · Detect "unusual activity"

### Virus Scanning

- · Search for a "signature"
  - Extract of the virus that is (we hope!) unique to the virus and not any legitimate code.
- · Some viruses are encrypted
  - Signature is either the code that does the decryption or the scanner must be smart enough to decrypt the virus
- Some viruses mutate to change their code every time they infect another system
  - Run the code through an emulator to detect the mutation

### Virus Scanning

- You don't want to scan through hundreds of thousands of files
  - Search in critical places likely to be infected (e.g., \windows\system32 or removable media)
- · Passive disk scan or active I/O scan

### Worm Scanning

- · Worms do not attach themselves to files
  - Searchfor worm files (standalone programs)
- · Search incoming email

### Defense from malicious software

- · Access privileges
  - Don't run as administrator
  - Warning: network services don't run with the privileges of the user requesting them
- Signed software
  - Validate the integrity of the software you install
- · Personal firewall
  - Intercept and explicitly allow/deny applications access to the network
  - Application-aware
    - · What program is the network access coming from?

### Code Integrity: Signed Software

- Signed software
- · Per-page signatures
  - Check hashes for every page upon loading
  - OS X & Vista/Windows 7:
    - · OS X: codesign command
    - · Vista: signwizard GUI
  - XP/Vista/Windows 7: (Microsoft Authenticode)
    - Hashes stored in system catalog (Vista/Win7) or signed & embedded in file
  - OS X:
    - · Hashes & certificate chain stored in file

### Microsoft Authenticode

A format for signing executable code (dll, exe, cab, ocx, class files)

### Microsoft Authenticode

### Software publisher:

- Generate a public/private key pair
- Get a digital certificate: VeriSign class 3 Commercial Software Publisher's certificate
- Generate a hash of the code to create a fixed-length digest
- Encrypt the hash with your private key
- Combine digest & certificate into a Signature Block
- Embed Signature Block in executable

### Recipient

- Call WinVerifyTrust function to validate:
  - Validate certificate, decrypt digest, compare with hash of downloaded code

### Microsoft Vista code integrity checks

- · Check hashes for every page as it's loaded
  - Done by file system driver
- Hashes in system catalog or embedded in file along with X.509 certificate.
- · Check integrity of boot process
  - Kernel code must be signed or it won't load
  - Drivers shipped with Windows must be certified or contain a certificate from Microsoft

### Auditing

Go through software source code and search for security holes

- Need access to source
- Experienced staff + time
- E.g., OpenBSD

Complex systems will have more bugs

- And will be harder to audit

### System complexity

### Windows complexity: lines of code OS version Year 3.1 1992 3 million 4 million NT 1992 95 1995 15 million NT 4.0 1996 16.5 million 198 18 million 98 2000 2000 35-60 million ΧP 2001 35 million Vista 2007 50 million

### System complexity

OS complexity: number of system calls

| OS version                   | Year | Sys calls |
|------------------------------|------|-----------|
| Unix 1 <sup>st</sup> edition | 1971 | 33        |
| 4.3 BSD Net 2                | 1991 | 136       |
| Linux 1.2                    | 1996 | 211       |
| SunOS 5.6                    | 1997 | 190       |
| Linux 2.0                    | 1998 | 229       |
| Win NT 4.0 sp3               | 1999 | 3,433     |

### Other security needs

- · Access control: privacy
  - Multilevel security
    - Unclassified, Confidential, Secret, Top Secret, Top Secret/Special Compartmented Intelligence
    - · Generally does not map well to the civilian world
  - Restrict access to systems, network data
- · Anonymity
- Integrity

### Dealing with application security

- Isolation & memory safety
  - Rely on operating system
- · Code auditing
  - If possible need access to code & staff
- Access control checking at interfaces
  - E.g., Java security manager
- Code signing
  - E.g., ActiveX
- Runtime/load-time code verification
  - Java bytecode verifier, loader
  - Microsoft CLR

