Distributed Systems

Introduction to Cryptography

[^0]
Cryptographic Systems

Authentication \& Communication
Ngywioggazhon Pystemp
Auesfnsicutiwf \& Moiiunocaiwn
Pigtoaoyp

Cryptography \neq Security

Cryptography may be a component of a secure system
Adding cryptography may not make a system secure

1967 D. Kahn, Codebreakers p. xvi, Cryptology is the science that embraces cryptography and cryptanalysis, but the term 'cryptology' sometimes loosely designates the entire dual field of both rendering signals secure and extracting information from them.

- Oxford English Dictionary

Terms

Plaintext (cleartext), message M
encryption, $E(M)$
produces ciphertext, $C=E(M)$
decryption: $M=D(C)$
Cryptographic algorithm, cipher

Restricted cipher

Secret algorithm

- Leaking
- Reverse engineering
- HD DVD (Dec 2006) and Blu-Ray (Jan 2007)
- RC4
- All digital cellular encryption algorithms
- DVD and DIVX video compression
- Firewire
- Enigma cipher machine
- Every NATO and Warsaw Pact algorithm during Cold War

Terms: types of ciphers

- restricted cipher
- symmetric algorithm
- public key algorithm

The key

The key

- We understand how it works:
- Strengths
- Weaknesses
- Based on this understanding, we can assess how much to trust the key \& lock.

Public key algorithm

Public and private keys

$$
\begin{aligned}
& C_{1}=E_{\text {public }}(M) \\
& M=D_{\text {private }}\left(C_{1}\right)
\end{aligned}
$$

also:

$$
\begin{aligned}
& C_{2}=E_{\text {private }}(M) \\
& M=D_{\text {public }}\left(C_{2}\right)
\end{aligned}
$$

Symmetric algorithm

Secret key

$$
\begin{aligned}
& C=E_{K}(M) \\
& M=D_{K}(C)
\end{aligned}
$$

McCarthy's puzzle (1958)

The setting:

- Two countries are at war
- One country sends spies to the other country
- To return safely, spies must give the border guards a password
- Spies can be trusted
- Guards chat - information given to them may leak

McCarthy's puzzle

Challenge
How can a guard authenticate a person without knowing the password?

Enemies cannot use the guard's knowledge to introduce their own spies

Solution to McCarthy's puzzle

Michael Rabin, 1958

Use one-way function, $B=f(A)$

- Guards get B ...
- Enemy cannot compute A
- Spies give A, guards compute $f(A)$
- If the result is B, the password is correct.

Example function:
Middle squares

- Take a 100-digit number (A), and square it
- Let $B=$ middle 100 digits of 200-digit result

One-way functions

- Easy to compute in one direction
- Difficult to compute in the other

Examples:
Factoring:
$p q=N$
EASY
find p, q given N DIFFICULT
Discrete Log:
$a^{b} \bmod c=N \quad E A S Y$
find b given a, c, N DIFFICULT

More terms

- one-way function
- Rabin, 1958: McCarthy's problem
- middle squares, exponentiation, ...
- [one-way] hash function
- message digest, fingerprint, cryptographic checksum, integrity check
- encrypted hash
- message authentication code
- only possessor of key can validate message

Yet another term

- Digital Signature
- Authenticate, not encrypt message
- Use pair of keys (private, public)
- Owner encrypts message with private key
- Sender validates by decrypting with public key
- Generally use hash(message).

McCarthy's puzzle example

Example with an 18 digit number
$A=289407349786637777$
$A^{2}=83756614110525308948445338203501729$
Middle square, $B=110525308948445338$

Given A, it is easy to compute B
Given B, it is extremely hard to compute A

More terms

- Stream cipher
- Encrypt a message a character at a time
- Block cipher
- Encrypt a message a chunk at a time

Cryptography: what is it good for?

- Authentication
- determine origin of message
- Integrity
- verify that message has not been modified
- Nonrepudiation
- sender should not be able to falsely deny that a message was sent
- Confidentiality
- others cannot read contents of the message

Cryptographic toolbox

- Symmetric encryption
- Public key encryption
- One-way hash functions
- Random number generators

Classic Cryptosystems

Substitution Ciphers

Ccesar cipher

Earliest documented military use of cryptography

- Julius Caesar c. 60 BC
- shift cipher: simple variant of a substitution cipher
- each letter replaced by one n positions away modulo alphabet size
$n=$ shift value $=$ key

Similar scheme used in India

- early Indians also used substitutions based on phonetics similar to pig latin

Last seen as ROT13 on Usenet to keep the reader from seeing offensive messages unwillingly

Ccesar cipher

```
A|BCD|E|FGHITJ/KLMMNOPQQRSTU|VWXYZZ
ABCDDEFFGHIJJKLMNOPQRSTUVWXYZ
```


Ccesar cipher

A|B|C|DEFF|GHIJKLMNOPQRSTUVWXIZ UVWXYZABCDDEFGHIJKLMNOPQRST
shift alphabet by n (6)

Casar cipher

MY CAT HAS FLEAS
A B C D DEFF GHIJTKLMNOPQRSTUVWXIZ UVWXYZABCDDEFGHIJKLMNOPQRST

Ccesar cipher

MY CAT HAS FLEAS
ABCDEFFGHIJKLMNOPQRSTUVWXYZ UVWXIZZABCDEFG|HIJKLMNOPQRST
G

Ccesar cipher

MY CAT HAS FLEAS
ABC|DEEFGHIJKLMNOPQRSTUVWXYZ UVWXIYZABCDEFGHIJTKLMNOPQRST GS

Casar cipher

MY CAT HAS FLEAS
ABCDDEFGGHIJKKMNOPQRSTUVWXYZ UVVWYZABCDEFGHIJKLMNOPQRST CSW GSW

Ccesar cipher

MY CAT HAS FLEAS
A B C D DEFFGHIJKLMMOPQRSTUVWXIZ UVWXYZABCDEFGHIJKLMNOPQRST

GSWU

Cassar cipher

MY CAT HAS FLEAS
A B C DDEFFGHIJTKLMNOPQRRSTUVWXYZ UVWXIZZABCDDEFGHIJKLMNOPQRST GSWUN

Casar cipher

MY CAT HAS FLEAS

 GSWUNB

Ccesar cipher

MY CAT HAS FLEAS
A B C D E F F GHII J K LIMNO|PQR|STVVWXYZ UVWXYZABCDEEFGHIJJKLMNOPQRST GSWUNBU

Ccesar cipher

MY CAT HAS FLEAS
 UVWXVZZA B C
GSWUNBUM

Ccesar cipher

MY CAT HAS FLEAS

」
GSWUNBUMZ

Cassar cipher

MY CAT HAS FLEAS
A|B|C|D|E|F|G|H|I|J|K LIMNOPQRASTUVWXYZ

ᄂ
GSWUNBUMZFY

Casar cipher

MY CAT HAS FLEAS
$A|B| C|D| E F F G H I J \mid K L M N O P Q R S T U V W X Y Z$ UVWXYZABCDEFGHIJKLMNOPQRST

GSWUNBUMZFYU

Ccesar cipher

MY CAT HAS FLEAS
A B|C|DEFG|HIJKLMNOPQRSTUVWXIZ UVWXIYZA|B|CDEFFGHIJTKLMNOPQRST
GSWUNBMUFZZUM

Ccesar cipher

MY CAT HAS FLEAS
ABCDDEFGGHIJKLMNOPQRSTUVWXYZ UVWXIZZAB CDEFFGHIJKLMNOPQRST
GSWUNBMUFZYUM

- Convey one piece of information for decryption: shift value
- trivially easy to crack (26 possibilities for a 26 character alphabet)

Substitution cipher

```
MY CAT HAS FLEAS
ABBCDDEFF/GHITJIKIMNOPIQRSTTUVWXYZ
MPSRRLQEAJTNCIFZWOYBXGGKUDVH
IVSMXAMBQCLMB
- General case: arbitrary mapping
- both sides must have substitution alphabet
```

Ancient Hebrew variant (ATBASH)

MY CAT HAS FLEAS
ABCDDEFGIHIJIKLIMNOPPQRTSTUVWXIYZ ZYXWVUTISRQPONMLIKJITHIGFEDCIBA

NBXZGSZHƯOVZH

- c. 600 BC
- No information (key) needs to be conveyed!

Substitution cipher

Easy to decode:

- vulnerable to frequency analysis

Moby Dick (1.2M chars)	Shakespeare (55.8 M chars)	
e	12.300%	e
o	11.797%	
d	4.282%	o
b	1.773%	d
x	0.108%	b

Statistical Analysis

Letter frequencies
E: 12\%
A, H, I, N, O, R, S, T: 6-9\%
D, L: 4\%
$B, C, F, G, M, P, U, W, Y: 1.5-2.8 \%$
J, K, Q, V, X, Z: < 1%
Common digrams:
TH, HE, IN, ER, AN, RE, ...
Common trigrams
THE, ING, AND, HER, ERE, ...

Vigenère polyalphabetic cipher
plaintext letter
ABCDEFGHIJKLMNOPQRST ABCDEFGHIJKLMNOPQRST BCDEFGHIJKLMNOPQRSTU CDEFGHIJKLMNOPQRSTUV DEFGHIJKLMNOPQRSTUVW
keytext letterEFGHIJKLMNOPQRSTUVWX
FGHIJKLMNOPQRSTUVWXY
ciphertext letter

Polyalphabetic ciphers

Designed to thwart frequency analysis techniques

- different ciphertext symbols can represent the same plaintext symbol
- $1 \rightarrow$ many relationship between
letter and substitute
Leon Battista Alberti: 1466: invented key
- two disks
- line up predetermined letter on inner disk with outer disk
- plaintext on inner \rightarrow ciphertext on outer
- after n symbols, the disk is rotated to a new alignment

Vigenère polyalphabetic cipher

- Blaise de Vigenère, court of Henry III of France, 1518
- Use table and key word to encipher a message
- repeat keyword over text: (e.g. key=FACE)

FA CEF ACE FACEF
MY CAT HAS FLEAS

- encrypt: find intersection:
row = keyword letter
column = plaintext letter
- decrypt: column = keyword letter, search for intersection = ciphertext letter
- message is encrypted with as many substitution ciphers as there are letters in the keyword

Vigenère polyalphabetic cipher

FA CEF ACE FACEF
MY CAT HAS PLEAS
R

> ABCDEFGHIJKLMNOPQRSTUVWXYZ BCDEFGHIJKLMNOPQRSTUVWXYZA CDEFGHIJKLMNOPQRSTUVWXYZAB DEFGHIJKLMNOPQRSTUVWXYZABC EFGHIJKLMNOPQRSTUVWXYZABCD FGHI JKLMNOPQRSTUVWXYZABCDE GHIJKLMNOPQRSTUVWXYZABCDEF HIJKLMNOPQRSTUVWXYZABCDEFG

Vigenère polyalphabetic cipher

```
FA CEF ACE FACEF
MY CAT HAS DIEAS
RY
```

ABCDEFGHIJKLMNOPQRSTUVWX BCDEFGHIJKLMNOPQRSTUVWXYZA CDEFGHIJKLMNOPQRSTUVWXYZAB D E F GHI J K L MNOPQRSTUVWXYZABC EFGHIJKLMNOPQRSTUVWXYZABCD F GHIJKLMNOPQRSTUVWXYZABCDE GHIJKLMNOPQRSTUVWXYZABCDEF HIJKLMNOPQRSTUVWXYZABCDEFG

Vigenère polyalphabetic cipher

FA CEF ACE FACEF
MY CAT HAS DLEAS
RY E

ABCDEFGGI|J|LMNOPQRSTUVWXVZ BCDEFGHIJKLMNOPQRSTUVWXYZA CDEF GHIJKLMNOPQRSTUVWXYZAB DEFGHI JKLMNOPQRSTUVWXYZABC EFGHIJKLMNOPQRSTUVWXYZABCD F GHIJKLMNOPQRSTUVWXYZABCDE GHIJKLMNOPQRSTUVWXYZABCDEF HIJKLMNOPQRSTUVWXYZABCDEFG

Vigenère polyalphabetic cipher

FA CEF ACE FACEF
MY CAT HAS ILEAS
RY EE
ABCDEFGHIJKLMNOPQRSTUVWXYZ BCDEFGHIJKLMNOPQRSTUVWXYZA CDEFGHIJKLMNOPQRSTUVWXYZAB DEFGHIJKLMNOPQRSTUVWXYZABC EF GHIJKLMNOPQRSTUVWXYZABCD F GHIJKLMNOPQRSTUVWXYZABCDE GHIJKLMNOPQRSTUVWXYZABCDEF HIJKLMNOPQRSTUVWXYZABCDEFG

Vigenère polyalphabetic cipher

FA CEF ACE FACEE
MY CAT HAS RLEAS
RY EEY
A B C D DEFGHIJK LMNOPQRETUVWXVZ B CDEF GHIJKLMNOPQRSTUVWXYZA CDEFGHIJKLMNOPQRSTUVWXYZAB DEFGHIJKLMNOPQRSTUVWXYZABC EFGHIJKLMNOPQRSTUVWXYZABCD F GHIJKLMNOPQRSTUVWXVZABCDE GHIJKLMNOPQRSTUVWXYZABCDEF HIJKLMNOPQRSTUVWXYZABCDEFG

Vigenère polyalphabetic cipher

FA CEF ACE FACEF
MY CAT HAS FLEAS
RY EEY H

A B CDEF GEI JKLMNOPQRSTUVWXYZ B CDEFGHIJKLMNOPQRSTUVWXYZA CDEFGHIJKLMNOPQRSTUVWXYZAB DEFGHIJKLMNOPQRSTUVWXYZABC EFGHIJKLMNOPQRSTUVWXYZABCD FGHIJKLMNOPQRSTUVWXYZABCDE GHI JKLMNOPQRSTUVWXYZABCDEF HIJKLMNOPQRSTUVWXYZABCDEFG

Vigenère polyalphabetic cipher

FA CEF ACE FACEF
MY CAT HAS PLEAS
RY EEY HC
ABCDEFGGIJKLMNOPQRSTUVWXYZ B CDEFGHIJKLMNOPQRSTUVWXYZA CDEF GHI JKLMNOPQRSTUVWXYZAB DEFGHIJKLMNOPQRSTUVWXYZABC EFGHIJKLMNOPQRSTUVWXYZABCD FGHIJKLMNOPQRSTUVWXYZABCDE GHI JKLMNOPQRSTUVWXYZABCDEF HIJKLMNOPQRSTUVWXYZABCDEFG

Vigenère polyalphabetic cipher

> FA CEF ACE FACEF
> MY CAT HAS FLEAS
> RY EEY HCW

AB C DEEFGHIJKLMNOPQRSTUVWXYZ B C DEFFGHIJKMNOPQRSTUVWXYZA CDEFGHIJKLMNOPQRSTUVWXYZAB DEFGHI JKLMNOPQRSTUVWXYZABC EFGHIJKLMNOPQRSTUVWXYZABCD FGHIJKLMNOPQRSTUVWXYZABCDE GHIJKLMNOPQRSTUVWXYZABCDEF HIIJKLIMNOP QRISTUVWXY Z A B C C D

Vigenère polyalphabetic cipher

FA CEF ACE FACEF
MY CAT HAS DLEAS
RY EEY HCW K

A B C D DEFGHIJTLMNOPRQRSTUVWXVZ B CDEF GHIJKLMNOPQRSTUVWXYZA CDEFGHIJKLMNOPQRSTUVWXYZAB DEFGHIJKLMNOPQRSTUVWXYZABC EFGHIJKLMNOPQRSTUVWXYZABCD F GHIJRLMNOPQRSTUVWXYZABCDE GHIJKLMNOPQRSTUVWXYZABCDEF HIJKLMNOPQRSTUVWXYZABCDEFG

Vigenère polyalphabetic cipher

FA CEF ACE FACEF
MY CAT HAS PLEAS
RY EEY HCW KL
ABCDEFGHI JKLLMNOPQRSTUVWXYZ BCDEFGHIJKLMNOPQRSTUVWXYZA CDEFGHIJKLMNOPQRSTUVWXYZAB DEFGHIJKLMNOPQRSTUVWXYZABC EFGHIJKLMNOPQRSTUVWXYZABCD FGHIJKLMNOPQRSTUVWXYZABCDE GHIJKLMNOPQRSTUVWXYZABCDEF HIJKLMNOPQRSTUVWXYZABCDEFG

Vigenère polyalphabetic cipher

FA CEF ACE FACEE
MY CAT HAS TIEAS
RY EEY HCW KLG
ABCDEFGHIJKLMNOPQRSTUVWXYZ BCDEFGHIJKLMNOPQRSTUVWXYZA CDEFGHIJKLMNOPQRSTUVWXYZAB DEFGHIJKLMNOPQRSTUVWXYZABC EFGHI JKLMNOPQRSTUVWXYZABCD FGHIJKLMNOPQRSTUVWXYZABCDE GHI JKLMNOPQRSTUVWXYZABCDEF HIJKLMNOPQRSTUVWXYZABCDEFG

Vigenère polyalphabetic cipher

FA CEF ACE FACEF
MY CAT HAS FLFAS
RY EEY HCW KLGE

ABCDEFGHIJKLMNOPQRSTUVWXYZ B C DEFGHIJKLMNOPQRSTUVWXYZA CDEFGHIJKLMNOPQRSTUVWXYZAB DEFGHIJKLMNOPQRSTUVWXYZABC E) F GHIJKLMNOPQRSTUVWXYZABCD FGHIJKLMNOPQRSTUVWXYZABCDE GHIJKLMNOPQRSTUVWXYZABCDEF HIJKLMNOPQRSTUVWXYZABCDEFG

Vigenère polyalphabetic cipher

FA CEF ACE FACEF
MY CAT HAS PLEAS
RY EEY HCW KLGEX

ABC|DEFGHIJKLMNOPQRSTUVWXVZ B C DEFGHIJKLMNOPQRSTUVWXYZA CDEFGHIJKLMNOPQRSTUVWXYZAB DEFGHIJKLMNOPQRSTUVWXYZABC EFGHIJKLMNOPQRSTUVWXYZABCD F GHIJKLMNOPQRSTUVWXYZABCDE GHIJKLMNOPQRSTUVWXYZABCDEF HIJKLMNOPQRSTUVWXYZABCDEFG

Vigenère polyalphabetic cipher

"The rebels reposed their major trust, however, in the Vigenere, sometimes using it in the form of a brass cipher disc. In theory, it was an excellent choice, for so far as the South knew the cipher was unbreakable. In practice, it proved a dismal failure. For one thing, transmission errors that added or subtracted a letter ... unmeshed the key from

Transposition Ciphers

Cunningham of General Kirby-Smith's staff tried for twelve hours to decipher a garbled message; he finally gave up in disgust and galloped around the Union flank to the sender to find out what it said."

Transposition ciphers

- Permute letters in plaintext according to rules
- Knowledge of rules will allow message to be decrypted
- Earliest version used by the Spartans in the $5^{\text {th }}$ century $B C$ - staff cipher

Transposition ciphers: staff cipher

MYCATHASFLEAS

Transposition ciphers: staff cipher

MYCATHASFLEAS

Transposition ciphers: staff cipher

Transposition cipher

Table version of staff cipher

- enter data horizontally, read it vertically
- secrecy is the width of the table

Transposition ciphers: staff cipher

MYCATHASFLEAS

Transposition cipher

Table version of staff cipher

- enter data horizontally, read it vertically
- secrecy is the width of the table

M Y C A
THAS

S x y z

Transposition cipher

Table version of staff cipher

- enter data horizontally, read it vertically
- secrecy is the width of the table

$$
\begin{array}{c|c|cc}
\mathbf{M} & \mathbf{Y} & \mathbf{C} & \mathbf{A} \\
\mathbf{T} & \mathbf{H} & \mathbf{A} & \mathbf{S} \\
\mathbf{F} & \mathbf{I} & \mathbf{E} & \mathbf{A}
\end{array}
$$

\qquad MTFSYHLX

$$
\mathrm{S} x \mathrm{x} \mathbf{z}
$$

Transposition cipher

Table version of staff cipher

- enter data horizontally, read it vertically
- secrecy is the width of the table

Transposition cipher

Table version of staff cipher

- enter data horizontally, read it vertically
- secrecy is the width of the table

Transposition cipher with key

- permute letters in plaintext according to key
- read down columns, sorting by key

Transposition cipher with key

- permute letters in plaintext according to key

Transposition cipher with key

- permute letters in plaintext according to key
- read down columns, sorting by key
- read down columns, sorting by key

Transposition cipher with key

- permute letters in plaintext according to key
- read down columns, sorting by key
- read down columns, sorting by key

MYCATHASFLEAS

Transposition cipher with key

- permute letters in plaintext according to key
- read down columns, sorting by key

Combined ciphers

- Combine transposition with substitution ciphers
- German ADFGVX cipher (WWI)
- can be troublesome to implement
- may require a lot of memory
- may require that messages be certain lengths
- Difficult with manual cryptography

Electro-mechanical cryptographic engines

Rotor machines

1920s: mechanical devices used for automating encryption Rotor machine:

- set of independently rotating cylinders through which electrical pulses flow
- each cylinder has input \& output pin for each letter of the alphabet
- implements a version of the Vigenère cipher
- each rotor implements a substitution cipher
- output of each rotor is fed into the next rotor

Rotor machines

- Simplest rotor machine: single cylinder

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGH I J K L M N O P Q R S T U V W X Y Z
after a character is entered, the cylinder rotates one position

- internal combinations shifted by one
- polyalphabetic substitution cipher with a period of 26

Single cylinder rotor machine

Single cylinder rotor machine

MY CAT HAS FLEAS

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Single cylinder rotor machine

MY CAT HAS FLEAS
ABCDEEGHIIJKIMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ

SUI

Single cylinder rotor machine

my CAT fas rleas

Single cylinder rotor machine

MY CAT HAS FLEAS

SU

Single cylinder rotor machine

MY CAT HAS FLEAS

ABCDEFGHIJKLMNOPQRSTUVWXYZ

SUIU

Single cylinder rotor machine

MY CAT HAS FLEAS

Single cylinder rotor machine

MY CAT HAS FLEAS

ABCDEFGHIJKLMNOPQRSTUVWXYZ

SUIUVAY

Single cylinder rotor machine

MY CAT HAS FLEAS

ABCDEFGH I JKLMNOPQRSTUVWXYZ ABCD E FG HI JKIM NOPQR STUVNXXY Z

SUIUVAY

Single cylinder rotor machine

MY CAT HAS FLEAS

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ
suiuvayoi

Single cylinder rotor machine

MY CAT HAS FLEAS

SUIUVAYOIN

Single cylinder rotor machine

MY CAT HAS FLEAS

Single cylinder rotor machine

MY CAT HAS FLEAS

Single cylinder rotor machine

MY CAT HAS FLEAS

A BCDEFGH I J K L M N O P Q R S T U V W X Y Z

SUIUVAYOINKBY

Multi-cylinder rotor machines

Single cylinder rotor machine

- substitution cipher with a period = length of alphabet (e.g., 26)

Multi-cylinder rotor machine

- feed output of one cylinder as input to the next one
- first rotor advances after character is entered
- second rotor advances after a full period of the first
- polyalphabetic substitution cipher
- period $=$ (length of alphabet) ${ }^{\text {number of rotors }}$
- 326 -char cylinders $\Rightarrow 26^{3}=17,576$ substitution alphabets
- 526 -char cylinders $\Rightarrow 26^{5}=11,881,367$ substitution alphabets

Enigma

- Enigma machine used in Germany during WWII
- Three rotor system
- $26^{3}=17,576$ possible rotor positions
- Input data permuted via patch panel before sending to rotor engine

Enigma

- setting was f(date)
- find in book of codes
- broken by group at Bletchley Park (Alan Turing)

One-time pads

Only provably secure encryption scheme

- invented in 1917

$$
\text { KWXOPWMAELGHW... } Y+W \bmod 26=U
$$

- large non-repeating set of random key letters written on a pad
- each key letter on the pad encrypts exactly one plaintext character
- encryption is addition of characters modulo 26
- sender destroys pages that have been used
- receiver maintains identical pad

One-time pads

If pad contains
and we want to encrypt

$$
\begin{aligned}
& M+K \bmod 26=W \\
& Y+W \bmod 26=U \\
& C+X \bmod 26=Z \\
& A+O \bmod 26=O \\
& T+D \bmod 26=I \\
& H+W \bmod 26=D \\
& A+M \bmod 26=M \\
& S+A \bmod 26=S \\
& \mathrm{~F}+\mathrm{E} \bmod 26=\mathrm{J} \\
& \mathrm{~L}+\mathrm{L} \bmod 26=W \\
& \mathrm{E}+\mathrm{G} \bmod 26=\mathrm{K} \\
& A+H \bmod 26=H \\
& S+W \bmod 26=O
\end{aligned}
$$

One-time pads

The same ciphertext can	W $-\mathrm{D} \bmod 26=\mathrm{W}$
decrypt to anything	$\mathrm{U}-\mathrm{N} \bmod 26=\mathrm{U}$
depending on the key!	$\mathrm{Z}-\mathrm{V} \bmod 26=\mathrm{Z}$
	$\mathrm{O}-\mathrm{L} \bmod 26=\mathrm{O}$
Same ciphertext:	$\mathrm{I}-\mathrm{U} \bmod 26=\mathrm{I}$
WUZOIDMSJWKHO	$\mathrm{D}-\mathrm{X} \bmod 26=\mathrm{D}$
With a pad of:	$\mathrm{M}-\mathrm{E} \bmod 26=\mathrm{M}$
KWXOPWMAELGHW...	$\mathrm{S}-\mathrm{A} \bmod 26=\mathrm{S}$
Produces:	$\mathrm{J}-\mathrm{C} \bmod 26=\mathrm{J}$
THE DOG IS HAPPY	$\mathrm{W}-\mathrm{W} \bmod 26=\mathrm{W}$
	$\mathrm{K}-\mathrm{V} \bmod 26=\mathrm{K}$
	$\mathrm{H}-\mathrm{S} \bmod 26=\mathrm{H}$
	$\mathrm{O}-\mathrm{Q} \bmod 26=\mathrm{O}$

One-Time Pad

void onetimepad(void)
\{

```
FILE *if = fopen("intext", "r");
    FILE *kf = fopen("keytext", "r");
    FILE *of = fopen("outtext", "w");
    int c, k;
    while ((c = getc(if)) != EOF) {
        k = getc(kf);
        putc((c^k), of);
    }
    fclose(if); fclose(kf); fclose(of);
```

\}

One-time pads

Problems with one-time pads:

- key needs to be as long as the message!
- key storage can be problematic
- may need to store a lot of data
- keys have to be generated randomly
- cannot use pseudo-random number generator
- cannot reuse key sequence
- sender and receiver mustremain synchronized (e.g. cannot lose a message)

Digression: random numbers

- "anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin"
- John vonNeumann
- Pseudo-random generators
- Linear feedback shift registers
- Multiplicative lagged Fibonacci generators
- Linear congruential generator
- Obtain randomness from
- Time between keystrokes
- Various network/kernel events
- Cosmic rays
- Electrical noise
- Other encrypted messages

DES

- Data Encryption Standard
- adopted as a federal standard in 1976
- block cipher, 64 bit blocks
- 56 bit key
- all security rests with the key
- substitution followed by a permutation (transposition)
- same combination of techniques is applied on the plaintext block 16 times

DES: S-boxes

- After compressed key is XORed with expanded block
- 48-bit result moves to substitution operation via eight substitution boxes (s-boxes)
- Each S-box has
- 6 -bit input
- 4-bit output
- 48 bits divided into eight 6-bit sub-blocks
- Each block is operated by a separate S-box
- key components of DES's security
- net result: 48 bit input generates 32 bit output

Is DES secure?

56-bit key makes DES relatively weak

- 7.2×10^{16} keys
- Brute-force attack

Late 1990's:

- DES cracker machines built to crack DES keys in a few hours
- DES Deep Crack: 90 billion keys/second
- Distributed.net: test 250 billion keys/second

The power of 2

Adding an extra bit to a key doubles the search space.

Suppose it takes 1 second to attack a 20-bit key:
-21-bit key: 2 seconds
-32-bit key: 1 hour
-40-bit key: 12 days
-56-bit key: 2,178 years
-64-bit key: >557,000 years!

Increasing The Key

Can double encryption work for DES?

- Useless if we could find a key K such that:

$$
E_{\mathrm{k}}(P)=E_{\mathrm{k} 2}\left(E_{\mathrm{k} 1}(P)\right)
$$

- This does not hold for DES

Triple DES

Triple DES with two 56-bit keys:

$$
C=E_{K 1}\left(D_{\mathrm{K} 2}\left(\mathrm{E}_{\mathrm{K} 1}(P)\right)\right)
$$

Triple DES with three 56-bit keys:

$$
C=E_{k 3}\left(D_{K 2}\left(E_{k 1}(P)\right)\right)
$$

Decryption used in middle step for compatibility with DES $\left(K_{1}=K_{2}=K_{3}\right)$

$$
C=E_{k}\left(D_{K}\left(E_{k}(P)\right)\right) \equiv C=E_{K 1}(P)
$$

Double DES

Vulnerable to meet-in-the-middle attack

If we know some pair (P, C), then:
[1] Encrypt P for all 2^{56} values of K_{1}
[2] Decrypt C for all 2^{56} values of K_{2}

For each match where [1] = [2]

- test the two keys against another P, C pair
- if match, you are assured that you have the key

Triple DES

Prevent meet-in-the-middle attack with

- three stages
- and two keys

Triple DES:

$$
c=E_{k_{1}}\left(D_{K_{2}}\left(E_{k_{1}}(P)\right)\right)
$$

Decryption used in middle step for compatibility with DES

$$
c=E_{k}\left(D_{k}\left(E_{k}(P)\right)\right) \equiv c=E_{K 1}(P)
$$

Popular symmetric algorithms

```
IDEA - International Data Encryption Algorithm
    - }199
    - 128-bit keys, operates on 8-byte blocks (like DES)
    - algorithm is more secure than DES
RC4, by Ron Rivest
    - }199
    - key size up to 2048 bits
    - not secure against multiple messages encrypted with the same key
AES - Advanced Encryption Standard
    - NIST proposed successor to DES, chosen in October 2000
    - based on Rigndael cipher
    - 128,192, and 256 bit keys
```


AES

From NIST:
Assuming that one could build a machine that could recover a DES key in a second (i.e., try 2^{56} keys per second), then it would take that machine approximately 149 trillion years to crack a 128-bit AES key. To put that into perspective, the universe is believed to be less than 20 billion years old.

The end.

[^0]: Paul Krzyzanowski
 pxk@cs.rutgers.edu

