
Page 1Page 1

Clock Synchronization:
Physical Clocks

Paul Krzyzanowski

pxk@cs.rutgers.edu

Distributed Systems

Except as otherwise noted, the content of this presentation is licensed under the Creative Commons 
Attribution 2.5 License.



Page 2

What’s it for?

• Temporal ordering of events produced by 
concurrent processes

• Synchronization between senders and 
receivers of messages

• Coordination of joint activity

• Serialization of concurrent access for shared 
objects



Page 3Page 3

Physical clocks



Page 4

Logical vs. physical clocks

Logical clock keeps track of event ordering
– among related (causal) events

Physical clocks keep time of day
– Consistent across systems



Page 5

Quartz clocks

• 1880: Piezoelectric effect
– Curie brothers
– Squeeze a quartz crystal & it generates an electric field
– Apply an electric field and it bends

• 1929: Quartz crystal clock
– Resonator shaped like tuning fork
– Laser-trimmed to vibrate at 32,768 Hz
– Standard resonators accurate to 6 parts per million at 31° C
– Watch will gain/lose < ½ sec/day
– Stability > accuracy: stable to 2 sec/month
– Good resonator can have accuracy of 1 second in 10 years

• Frequency changes with age, temperature, and acceleration



Page 6

Atomic clocks

• Second is defined as 9,192,631,770 periods of 
radiation corresponding to the transition 
between two hyperfine levels of cesium-133

• Accuracy:
better than 1 second in six million years

• NIST standard since 1960



Page 7

UTC

• UT0
– Mean solar time on Greenwich meridian

– Obtained from astronomical observation

• UT1
– UT0 corrected for polar motion

• UT2
– UT1 corrected for seasonal variations in Earth’s 

rotation

• UTC
– Civil time measured on an atomic time scale



Page 8

UTC

• Coordinated Universal Time

• Temps Universel Coordonné

– Kept within 0.9 seconds of UT1

– Atomic clocks cannot keep mean time
• Mean time is a measure of Earth’s rotation



Page 9

Physical clocks in computers

Real-time Clock: CMOS clock (counter) circuit 
driven by a quartz oscillator

– battery backup to continue measuring time when 
power is off

OS generally programs a timer circuit to 
generate an interrupt periodically

– e.g., 60, 100, 250, 1000 interrupts per second
(Linux 2.6+ adjustable up to 1000 Hz)

– Programmable Interval Timer (PIT) – Intel 8253, 8254

– Interrupt service procedure adds 1 to a counter in memory



Page 10

Problem

Getting two systems to agree on time
– Two clocks hardly ever agree

– Quartz oscillators oscillate at slightly different 
frequencies

Clocks tick at different rates
– Create ever-widening gap in perceived time

– Clock Drift

Difference between two clocks at one point in time
– Clock Skew



Page 11

Sept 18, 2006
8:00:00

8:00:00 8:00:00



Page 12

Oct 23, 2006
8:00:00

8:01:24 8:01:48

Skew = +84 seconds
+84 seconds/35 days
Drift = +2.4 sec/day

Skew = +108 seconds
+108 seconds/35 days
Drift = +3.1 sec/day



Page 13

Perfect clock

UTC time, t

C
om

pu
te

r’
s 

ti
m

e
, 
C



Page 14

Drift with slow clock

UTC time, t

C
om

pu
te

r’
s 

ti
m

e
, 
C

skew



Page 15

Drift with fast clock

UTC time, t

C
om

pu
te

r’
s 

ti
m

e
, 
C

skew



Page 16

Dealing with drift

Assume we set computer to true time

Not good idea to set clock back
– Illusion of time moving backwards can confuse 

message ordering and software development 
environments



Page 17

Dealing with drift

Go for gradual clock correction

If fast:
Make clock run slower until it synchronizes

If slow:
Make clock run faster until it synchronizes



Page 18

Dealing with drift

OS can do this:
Change rate at which it requests interrupts
e.g.:

if system requests interrupts every
17 msec but clock is too slow:

request interrupts at (e.g.) 15 msec

Or software correction: redefine the interval

Adjustment changes slope of system time:
Linear compensating function



Page 19

Compensating for a fast clock

UTC time, t

C
om

pu
te

r’
s 

ti
m

e
, 
C

Linear compensating
function applied

Clock synchronized
skew



Page 20

Compensating for a fast clock

UTC time, t

C
o
m

p
u
te

r’
s
 t

im
e
, 
C



Page 21

Resynchronizing

After synchronization period is reached
– Resynchronize periodically

– Successive application of a second linear 
compensating function can bring us closer to true 
slope

Keep track of adjustments and apply 
continuously

– e.g., UNIX adjtime system call



Page 22

Getting accurate time

• Attach GPS receiver to each computer
± 1 msec of UTC

• Attach WWV radio receiver
Obtain time broadcasts from Boulder or DC

± 3 msec of UTC (depending on distance)

• Attach GOES receiver
± 0.1 msec of UTC

Not practical solution for every machine
– Cost, size, convenience, environment



Page 23

Getting accurate time

Synchronize from another machine
– One with a more accurate clock

Machine/service that provides time information:

Time server



Page 24

RPC

Simplest synchronization technique
– Issue RPC to obtain time

– Set time

Does not account for network or 
processing latency

client serverwhat’s the time?

3:42:19



Page 25

Cristian’s algorithm

Compensate for delays
– Note times:

• request sent: T0

• reply received: T1

– Assume network delays are symmetric

server

client
time

request reply

T0 T1

Tserver



Page 26

Cristian’s algorithm

Client sets time to:

server

client
time

request reply

T0 T1

Tserver

= estimated overhead
in each direction



Page 27

Error bounds

If minimum message transit time (Tmin) is known:

Place bounds on accuracy of result



Page 28

Error bounds

server

client
time

request reply

T0 T1

Tserver

Tmin Tmin
Earliest time 
message arrives

Latest time 
message leaves

range = T1-T0-2Tmin

accuracy of result =



Page 29

Cristian’s algorithm: example

• Send request at 5:08:15.100 (T0)

• Receive response at 5:08:15.900 (T1)
– Response contains 5:09:25.300 (Tserver)

• Elapsed time is T1 -T0

5:08:15.900 - 5:08:15.100 = 800 msec

• Best guess: timestamp was generated
400 msec ago

• Set time to Tserver+ elapsed time
5:09:25.300 + 400 = 5:09.25.700



Page 30

Cristian’s algorithm: example

If best-case message time=200 msec

server

client
time

request reply

T0 T1

Tserver

200 200

800

Error =

T0 = 5:08:15.100
T1 = 5:08:15.900
Ts = 5:09:25:300
Tmin = 200msec



Page 31

Berkeley Algorithm

• Gusella & Zatti, 1989

• Assumes no machine has an accurate time 
source

• Obtains average from participating computers

• Synchronizes all clocks to average



Page 32

Berkeley Algorithm

• Machines run time dæmon
– Process that implements protocol

• One machine is elected (or designated) as the 
server (master)
– Others are slaves



Page 33

Berkeley Algorithm

• Master polls each machine periodically
– Ask each machine for time

• Can use Cristian’s algorithm to compensate for network 
latency

• When results are in, compute average
– Including master’s time

• Hope: average cancels out individual clock’s 
tendencies to run fast or slow

• Send offset by which each clock needs 
adjustment to each slave
– Avoids problems with network delays if we send a 

time stamp



Page 34

Berkeley Algorithm

Algorithm has provisions for ignoring readings 
from clocks whose skew is too great

– Compute a fault-tolerant average

If master fails
– Any slave can take over



Page 35

Berkeley Algorithm: example

3:25 2:50 9:10

3:00

1. Request timestamps from all slaves

2:50



Page 36

Berkeley Algorithm: example

3:25 2:50 9:10

3:00

2. Compute fault-tolerant average:

2:50



Page 37

Berkeley Algorithm: example

3:25 2:50 9:10

3:00

3. Send offset to each client

+0:15

+0.15



Page 38

Network Time Protocol, NTP

1991, 1992

Internet Standard, version 3: RFC 1305



Page 39

NTP Goals

• Enable clients across Internet to be accurately 
synchronized to UTC despite message delays
– Use statistical techniques to filter data and gauge quality of 

results

• Provide reliable service
– Survive lengthy losses of connectivity

– Redundant paths

– Redundant servers

• Enable clients to synchronize frequently
– offset effects of clock drift

• Provide protection against interference
– Authenticate source of data



Page 40

NTP servers

Arranged in strata
– 1st stratum: machines 

connected directly to 
accurate time source

– 2nd stratum: machines 
synchronized from 1st

stratum machines

– …

SYNCHRONIZATION SUBNET

1

2

3

4



Page 41

NTP Synchronization Modes

Multicast mode
– for high speed LANS

– Lower accuracy but efficient

Procedure call mode
– Similar to Cristian’s algorithm

Symmetric mode
– Intended for master servers

– Pair of servers exchange messages and retain data 
to improve synchronization over time

All messages delivered unreliably with UDP



Page 42

NTP messages

• Procedure call and symmetric mode
– Messages exchanged in pairs

• NTP calculates:
– Offset for each pair of messages

• Estimate of offset between two clocks

– Delay
• Transmit time between two messages

– Filter Dispersion
• Estimate of error – quality of results
• Based on accuracy of server’s clock and consistency of 

network transit time

• Use this data to find preferred server: 
– lower stratum & lowest total dispersion



Page 43

NTP message structure

• Leap second indicator
– Last minute has 59, 60, 61 seconds

• Version number

• Mode (symmetric, unicast, broadcast)

• Stratum (1=primary reference, 2-15)

• Poll interval
– Maximum interval between 2 successive messages, 

nearest power of 2

• Precision of local clock
– Nearest power of 2



Page 44

NTP message structure

• Root delay
– Total roundtrip delay to primary source
– (16 bits seconds, 16 bits decimal)

• Root dispersion
– Nominal error relative to primary source

• Reference clock ID
– Atomic, NIST dial-up, radio, LORAN-C navigation 

system, GOES, GPS, …

• Reference timestamp
– Time at which clock was last set (64 bit)

• Authenticator (key ID, digest)
– Signature (ignored in SNTP)



Page 45

NTP message structure

• T1: originate timestamp
– Time request departed client (client’s time)

• T2: receive timestamp
– Time request arrived at server (server’s time)

• T3: transmit timestamp
– Time request left server (server’s time)



Page 46

NTP’s validation tests

• Timestamp provided ≠ last timestamp received
– duplicate message?

• Originating timestamp in message consistent with 
sent data
– Messages arriving in order?

• Timestamp within range?

• Originating and received timestamps ≠ 0?

• Authentication disabled? Else authenticate

• Peer clock is synchronized?

• Don’t sync with clock of higher stratum #

• Reasonable data for delay & dispersion



Page 47

SNTP

Simple Network Time Protocol
– Based on Unicast mode of NTP
– Subset of NTP, not new protocol
– Operates in multicast or procedure call mode
– Recommended for environments where server is 

root node and client is leaf of synchronization 
subnet

– Root delay, root dispersion, reference timestamp 
ignored

RFC 2030, October 1996



Page 48

SNTP

Roundtrip delay:

d = (T4-T1) - (T2-T3)

server

client
time

request reply

T1

T2

T4

T3

Time offset:



Page 49

SNTP example

server

client
time

request reply

T1=1100

T2=800

T4=1200

T3=850

Time offset:

Offset =

((800 - 1100) + (850 - 1200))/2

=((-300) + (-350))/2

= -650/2 = -325

Set time to T4 + t
= 1200 - 325 = 875



Page 50

Cristian’s algorithm

server

client
time

request reply

T1=1100

T2=800

T4=1200

T3=850

Offset = (1200 - 1100)/2 = 50

Set time to Ts + offset
= 825 + 50 = 875

Ts=825



Page 51

Key Points: Physical Clocks

• Cristian’s algorithm & SNTP
– Set clock from server

– But account for network delays

– Error: uncertainty due to network/processor 
latency: errors are additive
±10 msec and ±20 msec = ±30 msec.

• Adjust for local clock skew
– Linear compensating function



Page 52Page 52

The end.


