

Logical clocks

Assign sequence numbers to messages

- All cooperating processes can agree on order of events
- vs. physical clocks: time of day

Assume no central time source

- Each system maintains its own local clock
- No total ordering of events
 - No concept of happened-when

Happened-before

Lamport's "happened-before" notation

 $a \rightarrow b$ event *a* happened before event *b* e.g.: *a*: message being sent, *b*: message receipt

Transitive: if $a \rightarrow b$ and $b \rightarrow c$ then $a \rightarrow c$

Logical clocks & concurrency

Assign "clock" value to each event

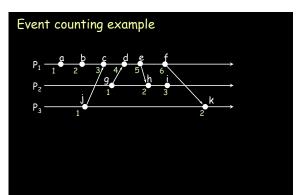
- if $a \rightarrow b$ then clock(a) < clock(b)
- since time cannot run backwards

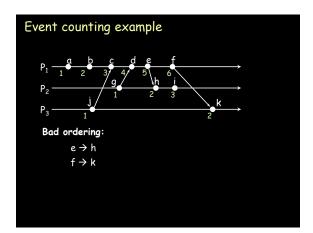
If a and b occur on different processes that do not exchange messages, then neither $a \rightarrow b$ nor $b \rightarrow a$ are true

- These events are concurrent

Event counting example

- Three systems: P_0, P_1, P_2
- Events *a*, *b*, *c*, ...
- Local event counter on each system
- Systems occasionally communicate





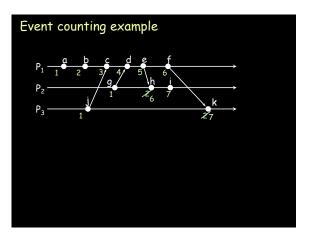
Lamport's algorithm

- Each message carries a timestamp of the sender's clock
- When a message arrives:
 if receiver's clock < message timestamp set system clock to (message timestamp + 1)
 - else do nothing
- Clock must be advanced between any two events in the same process

Lamport's algorithm

Algorithm allows us to maintain time ordering among related events

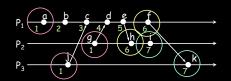
- Partial ordering



Summary

- Algorithm needs monotonically increasing software counter
- Incremented at least when events that need to be timestamped occur
- Each event has a Lamport timestamp attached to it
- + For any two events, where a \rightarrow b: L(a) < L(b)

Problem: Identical timestamps



 $a \rightarrow b, b \rightarrow c, ...$: local events sequenced $i \rightarrow c, f \rightarrow d, d \rightarrow g, ...$: Lamport imposes a send \rightarrow receive relationship

Concurrent events (e.g., a & i) <u>may</u> have the same timestamp ... or not

Unique timestamps (total ordering)

We can force each timestamp to be unique

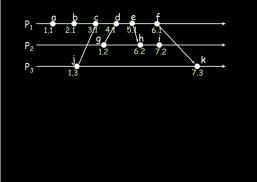
- Define global logical timestamp (Ti, i)
 - T_i represents local Lamport timestamp
 - i represents process number (globally unique)
 - E.g. (host address, process ID)

- Compare timestamps:

(T_i, i) < (T_j, j) if and only if

- T_i < T_j or T_i = T_j and i < j

Does not relate to event ordering



Problem: Detecting causal relations

If L(e) < L(e')- Cannot conclude that $e \rightarrow e'$

Looking at Lamport timestamps - Cannot conclude which events are causally related

Solution: use a vector clock

Vector clocks

Rules:

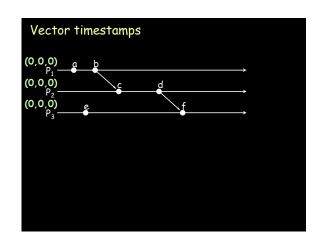
- 1. Vector initialized to 0 at each process $V_{i}[j] = 0$ for i, j = 1, ..., N
- 2. Process increments its element of the vector in local vector before timestamping event: $V_{i}[i] = V_{i}[i] + 1$
- 3. Message is sent from process P_i with V_i attached to it
- 4. When P_j receives message, compares vectors element by element and sets local vector to higher of two values
 - V_j[1] = max(V_i[1], V_j[1]) for i=1, ..., N

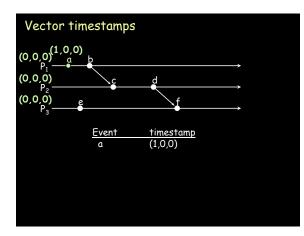
Comparing vector timestamps

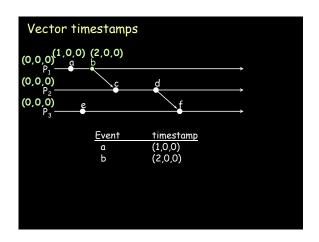
Define

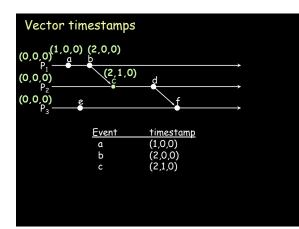
 $\begin{array}{l} \mathsf{V} = \mathsf{V}' \text{ iff } \mathsf{V}[i] = \mathsf{V}'[i] \text{ for } i = 1 \dots N \\ \mathsf{V} \leq \mathsf{V}' \text{ iff } \mathsf{V}[i] \leq \mathsf{V}'[i] \text{ for } i = 1 \dots N \end{array}$ For any two events e, e' if $e \rightarrow e'$ then V(e) < V(e') • Just like Lamport's algorithm if V(e) < V(e') then $e \rightarrow e'$

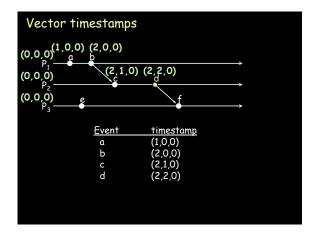
Two events are concurrent if neither $V(e) \leq V(e')$ nor $V(e') \leq V(e)$



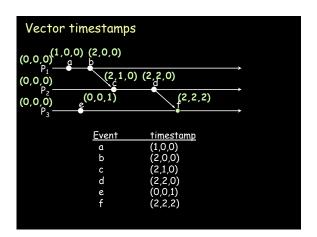


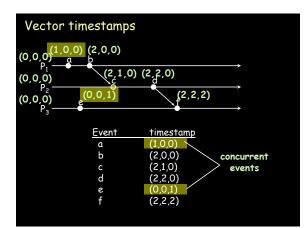


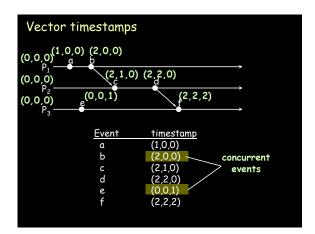


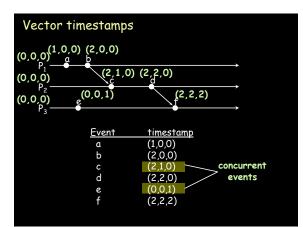


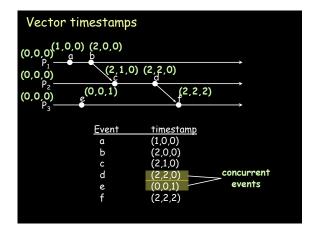












Summary: Logical Clocks & Partial Ordering

- Causality
 - If *a->b* then event *a* can affect event *b*
- Concurrency
 - If neither a->b nor b->a then one event cannot affect the other
- Partial Ordering
 - Causal events are sequenced
- Total Ordering
 - All events are sequenced

