
Page 1Page 1

Distributed File Systems

Paul Krzyzanowski

pxk@cs.rutgers.edu

Distributed Systems

Except as otherwise noted, the content of this presentation is licensed under the Creative Commons
Attribution 2.5 License.

Page 2Page 2

Distributed File Systems
Case Studies

NFS • AFS • CODA • DFS • SMB • CIFS
Dfs • WebDAV • GFS • Gmail-FS? • xFS

Page 3Page 3

NFS
Network File System

Sun Microsystems

c. 1985

Page 4

NFS Design Goals

– Any machine can be a client or server

– Must support diskless workstations

– Heterogeneous systems must be supported
• Different HW, OS, underlying file system

– Access transparency
• Remote files accessed as local files through normal file

system calls (via VFS in UNIX)

– Recovery from failure
• Stateless, UDP, client retries

– High Performance
• use caching and read-ahead

Page 5

NFS Design Goals

No migration transparency
If resource moves to another server, client must
remount resource.

Page 6

NFS Design Goals

No support for UNIX file access semantics
Stateless design: file locking is a problem.

All UNIX file system controls may not be available.

Page 7

NFS Design Goals

Devices
must support diskless workstations where every file
is remote.

Remote devices refer back to local devices.

Page 8

NFS Design Goals

Transport Protocol
Initially NFS ran over UDP using Sun RPC

Why UDP?
- Slightly faster than TCP

- No connection to maintain (or lose)

- NFS is designed for Ethernet LAN environment –
relatively reliable

- Error detection but no correction.

NFS retries requests

Page 9

NFS Protocols

Mounting protocol
Request access to exported directory tree

Directory & File access protocol
Access files and directories
(read, write, mkdir, readdir, …)

Page 10

Mounting Protocol

• Send pathname to server

• Request permission to access contents

• Server returns file handle
– File device #, inode #, instance #

client: parses pathname
contacts server for file handle

client: create in-code vnode at
mount point.
(points to inode for local files)
points to rnode for remote files

- stores state on client

Page 11

Mounting Protocol

static mounting
– mount request contacts server

Server: edit /etc/exports

Client: mount fluffy:/users/paul /home/paul

Page 12

Directory and file access protocol

• First, perform a lookup RPC
– returns file handle and attributes

• Not like open
– No information is stored on server

• handle passed as a parameter for other file
access functions
– e.g. read(handle, offset, count)

Page 13

Directory and file access protocol

NFS has 16 functions
– (version 2; six more added in version 3)

null
lookup

create
remove
rename

link
symlink
readlink

read
write

mkdir
rmdir
readdir

getattr
setattr

statfs

Page 14

NFS Performance

• Usually slower than local

• Improve by caching at client
– Goal: reduce number of remote operations
– Cache results of

read, readlink, getattr, lookup, readdir
– Cache file data at client (buffer cache)
– Cache file attribute information at client
– Cache pathname bindings for faster lookups

• Server side
– Caching is “automatic” via buffer cache
– All NFS writes are write-through to disk to avoid

unexpected data loss if server dies

Page 15

Inconsistencies may arise

Try to resolve by validation
– Save timestamp of file

– When file opened or server contacted for new
block

• Compare last modification time

• If remote is more recent, invalidate cached data

Page 16

Validation

• Always invalidate data after some time
– After 3 seconds for open files (data blocks)

– After 30 seconds for directories

• If data block is modified, it is:
– Marked dirty

– Scheduled to be written

– Flushed on file close

Page 17

Improving read performance

• Transfer data in large chunks
– 8K bytes default

• Read-ahead
– Optimize for sequential file access

– Send requests to read disk blocks before they are
requested by the application

Page 18

Problems with NFS

• File consistency

• Assumes clocks are synchronized

• Open with append cannot be guaranteed to work

• Locking cannot work
– Separate lock manager added (stateful)

• No reference counting of open files
– You can delete a file you (or others) have open!

• Global UID space assumed

Page 19

Problems with NFS

• No reference counting of open files
– You can delete a file you (or others) have open!

• Common practice
– Create temp file, delete it, continue access

– Sun’s hack:
• If same process with open file tries to delete it

• Move to temp name

• Delete on close

Page 20

Problems with NFS

• File permissions may change
– Invalidating access to file

• No encryption
– Requests via unencrypted RPC

– Authentication methods available
• Diffie-Hellman, Kerberos, Unix-style

– Rely on user-level software to encrypt

Page 21

Improving NFS: version 2

• User-level lock manager
– Monitored locks

• status monitor: monitors clients with locks
• Informs lock manager if host inaccessible
• If server crashes: status monitor reinstates locks on

recovery
• If client crashes: all locks from client are freed

• NV RAM support
– Improves write performance
– Normally NFS must write to disk on server before

responding to client write requests
– Relax this rule through the use of non-volatile

RAM

Page 22

Improving NFS: version 2

• Adjust RPC retries dynamically

– Reduce network congestion from excess RPC
retransmissions under load

– Based on performance

• Client-side disk caching

– cacheFS

– Extend buffer cache to disk for NFS
• Cache in memory first

• Cache on disk in 64KB chunks

Page 23

The automounter

Problem with mounts

– If a client has many remote resources mounted,
boot-time can be excessive

– Each machine has to maintain its own name space
• Painful to administer on a large scale

Automounter

– Allows administrators to create a global name space

– Support on-demand mounting

Page 24

Automounter

• Alternative to static mounting

• Mount and unmount in response to client
demand
– Set of directories are associated with a local

directory

– None are mounted initially

– When local directory is referenced
• OS sends a message to each server

• First reply wins

– Attempt to unmount every 5 minutes

Page 25

Automounter maps

Example:
automount /usr/src srcmap

srcmap contains:

cmd -ro doc:/usr/src/cmd

kernel -ro frodo:/release/src \

bilbo:/library/source/kernel

lib -rw sneezy:/usr/local/lib

Access /usr/src/cmd: request goes to doc

Access /usr/src/kernel:
ping frodo and bilbo, mount first response

Page 26

The automounter

VFS

NFS

KERNEL

application automounter

NFS request

NFS mount NFS
server

NFS request

Page 27

More improvements… NFS v3

• Updated version of NFS protocol

• Support 64-bit file sizes

• TCP support and large-block transfers

– UDP caused more problems on WANs (errors)

– All traffic can be multiplexed on one connection
• Minimizes connection setup

– No fixed limit on amount of data that can be
transferred between client and server

• Negotiate for optimal transfer size

• Server checks access for entire path from client

Page 28

More improvements… NFS v3

• New commit operation
– Check with server after a write operation to see

if data is committed

– If commit fails, client must resend data

– Reduce number of write requests to server

– Speeds up write requests
• Don’t require server to write to disk immediately

• Return file attributes with each request
– Saves extra RPCs

Page 29Page 29

AFS
Andrew File System

Carnegie-Mellon University

c. 1986(v2), 1989(v3)

Page 30

AFS

• Developed at CMU

• Commercial spin-off
– Transarc

• IBM acquired Transarc

Currently open source under IBM Public License

Also:

OpenAFS, Arla, and Linux version

Page 31

AFS Design Goal

Support information sharing
on a large scale

e.g., 10,000+ systems

Page 32

AFS Assumptions

• Most files are small

• Reads are more common than writes

• Most files are accessed by one user at a time

• Files are referenced in bursts (locality)
– Once referenced, a file is likely to be referenced

again

Page 33

AFS Design Decisions

Whole file serving
– Send the entire file on open

Whole file caching
– Client caches entire file on local disk

– Client writes the file back to server on close
• if modified

• Keeps cached copy for future accesses

Page 34

AFS Design

• Each client has an AFS disk cache

– Part of disk devoted to AFS (e.g. 100 MB)

– Client manages cache in LRU manner

• Clients communicate with set of trusted servers

• Each server presents one identical name space to clients

– All clients access it in the same way

– Location transparent

Page 35

AFS Server: cells

• Servers are grouped into administrative entities
called cells

• Cell: collection of

– Servers

– Administrators

– Users

– Clients

• Each cell is autonomous but cells may cooperate and
present users with one uniform name space

Page 36

AFS Server: volumes

Disk partition contains

file and directories

Volume
– Administrative unit of organization

• e.g. user’s home directory, local source, etc.
– Each volume is a directory tree (one root)

– Assigned a name and ID number

– A server will often have 100s of volumes

grouped into volumes

Page 37

Namespace management

Clients get information via cell directory server
(Volume Location Server) that hosts the Volume
Location Database (VLDB)

Goal:
everyone sees the same namespace

/afs/cellname/path

/afs/mit.edu/home/paul/src/try.c

Page 38

Accessing an AFS file

1. Traverse AFS mount point
E.g., /afs/cs.rutgers.edu

2. AFS client contacts Volume Location DB on Volume
Location server to look up the volume

3. VLDB returns volume ID and list of machines
(>1 for replicas on read-only file systems)

4. Request root directory from any machine in the list

5. Root directory contains files, subdirectories, and
mount points

6. Continue parsing the file name until another mount
point (from step 5) is encountered. Go to step 2 to
resolve it.

Page 39

Internally on the server

• Communication is via RPC over UDP

• Access control lists used for protection
– Directory granularity

– UNIX permissions ignored (except execute)

Page 40

Authentication and access

Kerberos authentication:
– Trusted third party issues tickets
– Mutual authentication

Before a user can access files
– Authenticate to AFS with klog command

• “Kerberos login” – centralized authentication

– Get a token (ticket) from Kerberos
– Present it with each file access

Unauthorized users have id of system:anyuser

Page 41

AFS cache coherence

On open:
– Server sends entire file to client

and provides a callback promise:

– It will notify the client when any other process
modifies the file

Page 42

AFS cache coherence

If a client modified a file:
– Contents are written to server on close

When a server gets an update:
– it notifies all clients that have been issued the

callback promise

– Clients invalidate cached files

Page 43

AFS cache coherence

If a client was down, on startup:
– Contact server with timestamps of all cached files

to decide whether to invalidate

If a process has a file open, it continues
accessing it even if it has been invalidated

– Upon close, contents will be propagated to server

AFS: Session Semantics

Page 44

AFS: replication and caching

• Read-only volumes may be replicated on
multiple servers

• Whole file caching not feasible for huge files
– AFS caches in 64KB chunks (by default)

– Entire directories are cached

• Advisory locking supported
– Query server to see if there is a lock

Page 45

AFS summary

Whole file caching
– offers dramatically reduced load on servers

Callback promise
– keeps clients from having to check with server to

invalidate cache

Page 46

AFS summary

AFS benefits
– AFS scales well

– Uniform name space

– Read-only replication

– Security model supports mutual authentication,
data encryption

AFS drawbacks
– Session semantics

– Directory based permissions

– Uniform name space

Page 47

Sample Deployment (2008)

• Intel engineering (2007)

– 95% NFS, 5% AFS

– Approx 20 AFS cells managed by 10 regional organizations

– AFS used for:
• CAD, applications, global data sharing, secure data

– NFS used for:
• Everything else

• Morgan Stanley (2004)

– 25000+ hosts in 50+ sites on 6 continents

– AFS is primary distributed filesystem for all UNIX hosts

– 24x7 system usage; near zero downtime

– Bandwidth from LANs to 64 Kbps inter-continental WANs

Page 48Page 48

CODA
COnstant Data Availability

Carnegie-Mellon University

c. 1990-1992

Page 49

CODA Goals

Descendant of AFS

CMU, 1990-1992

Goals
Provide better support for replication than AFS

- support shared read/write files

Support mobility of PCs

Page 50

Mobility

• Provide constant data availability in
disconnected environments

• Via hoarding (user-directed caching)
– Log updates on client

– Reintegrate on connection to network (server)

• Goal: Improve fault tolerance

Page 51

Modifications to AFS

• Support replicated file volumes

• Extend mechanism to support disconnected
operation

• A volume can be replicated on a group of
servers
– Volume Storage Group (VSG)

Page 52

Volume Storage Group

• Volume ID used in the File ID is
– Replicated volume ID

• One-time lookup
– Replicated volume ID list of servers and local

volume IDs

– Cache results for efficiency

• Read files from any server

• Write to all available servers

Page 53

Disconnection of volume servers

AVSG: Available Volume Storage Group
– Subset of VSG

What if some volume servers are down?

On first download, contact everyone you can
and get a version timestamp of the file

Page 54

Disconnected servers

If the client detects that some servers have old
versions

– Some server resumed operation

– Client initiates a resolution process
• Updates servers: notifies server of stale data

• Resolution handled entirely by servers

• Administrative intervention may be required
(if conflicts)

Page 55

AVSG = Ø

• If no servers are available
– Client goes to disconnected operation mode

• If file is not in cache
– Nothing can be done… fail

• Do not report failure of update to server
– Log update locally in Client Modification Log (CML)

– User does not notice

Page 56

Reintegration

Upon reconnection
– Commence reintegration

Bring server up to date with CML log playback
– Optimized to send latest changes

Try to resolve conflicts automatically
– Not always possible

Page 57

Support for disconnection

Keep important files up to date
– Ask server to send updates if necessary

Hoard database
– Automatically constructed by monitoring the user’s

activity

– And user-directed prefetch

Page 58

CODA summary

• Session semantics as with AFS

• Replication of read/write volumes
– Client-driven reintegration

• Disconnected operation
– Client modification log

– Hoard database for needed files
• User-directed prefetch

– Log replay on reintegration

Page 59Page 59

DFS
Distributed File System

Open Group

Page 60

DFS

• Part of Open Group’s Distributed Computing
Environment

• Descendant of AFS - AFS version 3.x

• Development stopped c. 2005

Assume (like AFS):
– Most file accesses are sequential

– Most file lifetimes are short

– Majority of accesses are whole file transfers

– Most accesses are to small files

Page 61

DFS Goals

Use whole file caching (like original AFS)

But…

session semantics are hard to live with

Create a strong consistency model

Page 62

DFS Tokens

Cache consistency maintained by tokens

Token:
– Guarantee from server that a client can perform

certain operations on a cached file

Page 63

DFS Tokens

• Open tokens
– Allow token holder to open a file.
– Token specifies access (read, write, execute, exclusive-

write)

• Data tokens
– Applies to a byte range
– read token - can use cached data
– write token - write access, cached writes

• Status tokens
– read: can cache file attributes
– write: can cache modified attributes

• Lock token
– Holder can lock a byte range of a file

Page 64

Living with tokens

• Server grants and revokes tokens
– Multiple read tokens OK

– Multiple read and a write token or multiple write
tokens not OK if byte ranges overlap

• Revoke all other read and write tokens

• Block new request and send revocation to other token
holders

Page 65

DFS design

• Token granting mechanism
– Allows for long term caching and strong

consistency

• Caching sizes: 8K – 256K bytes

• Read-ahead (like NFS)
– Don’t have to wait for entire file

• File protection via ACLs

• Communication via authenticated RPCs

Page 66

DFS Summary

Essentially AFS v2 with server-based token
granting

– Server keeps track of who is reading and who is
writing files

– Server must be contacted on each open and close
operation to request token

Page 67Page 67

SMB
Server Message Blocks

Microsoft

c. 1987

Page 68

SMB Goals

• File sharing protocol for Windows
95/98/NT/200x/ME/XP/Vista

• Protocol for sharing:
Files, devices, communication abstractions (named pipes),
mailboxes

• Servers: make file system and other resources available to clients

• Clients: access shared file systems, printers, etc. from servers

Design Priority:

locking and consistency over client caching

Page 69

SMB Design

• Request-response protocol
– Send and receive message blocks

• name from old DOS system call structure

– Send request to server (machine with resource)
– Server sends response

• Connection-oriented protocol
– Persistent connection – “session”

• Each message contains:
– Fixed-size header
– Command string (based on message) or reply string

Page 70

Message Block

• Header: [fixed size]

– Protocol ID

– Command code (0..FF)

– Error class, error code

– Tree ID – unique ID for resource in use by client
(handle)

– Caller process ID

– User ID

– Multiplex ID (to route requests in a process)

• Command: [variable size]

– Param count, params, #bytes data, data

Page 71

SMB Commands

• Files
– Get disk attr

– create/delete directories

– search for file(s)

– create/delete/rename file

– lock/unlock file area

– open/commit/close file

– get/set file attributes

Page 72

SMB Commands

• Print-related
– Open/close spool file

– write to spool

– Query print queue

• User-related
– Discover home system for user

– Send message to user

– Broadcast to all users

– Receive messages

Page 73

Protocol Steps

• Establish connection

Page 74

Protocol Steps

• Establish connection

• Negotiate protocol
– negprot SMB

– Responds with version number of protocol

Page 75

Protocol Steps

• Establish connection

• Negotiate protocol

• Authenticate/set session parameters
– Send sesssetupX SMB with username, password

– Receive NACK or UID of logged-on user

– UID must be submitted in future requests

Page 76

Protocol Steps

• Establish connection

• Negotiate protocol - negprot

• Authenticate - sesssetupX

• Make a connection to a resource
– Send tcon (tree connect) SMB with name of

shared resource

– Server responds with a tree ID (TID) that the
client will use in future requests for the resource

Page 77

Protocol Steps

• Establish connection

• Negotiate protocol - negprot

• Authenticate - sesssetupX

• Make a connection to a resource – tcon

• Send open/read/write/close/… SMBs

Page 78

Locating Services

• Clients can be configured to know about servers

• Each server broadcasts info about its presence

– Clients listen for broadcast

– Build list of servers

• Fine on a LAN environment

– Does not scale to WANs

– Microsoft introduced browse servers and the
Windows Internet Name Service (WINS)

– or … explicit pathname to server

Page 79

Security

• Share level

– Protection per “share” (resource)

– Each share can have password

– Client needs password to access all files in share

– Only security model in early versions

– Default in Windows 95/98

• User level

– protection applied to individual files in each share
based on access rights

– Client must log in to server and be authenticated

– Client gets a UID which must be presented for
future accesses

Page 80Page 80

CIFS
Common Internet File

System
Microsoft, Compaq, …

c. 1995?

Page 81

SMB evolves

SMB was reverse-engineered
– samba under Linux

Microsoft released protocol to X/Open in 1992

Microsoft, Compaq, SCO, others joined to
develop an enhanced public version of the SMB
protocol:

Common Internet File System
(CIFS)

Page 82

Original Goals

• Heterogeneous HW/OS to request file
services over network

• Based on SMB protocol

• Support
– Shared files

– Byte-range locking

– Coherent caching

– Change notification

– Replicated storage

– Unicode file names

Page 83

Original Goals

• Applications can register to be notified when
file or directory contents are modified

• Replicated virtual volumes
– For load sharing

– Appear as one volume server to client

– Components can be moved to different servers
without name change

– Use referrals

– Similar to AFS

Page 84

Original Goals

• Batch multiple requests to minimize round-
trip latencies
– Support wide-area networks

• Transport independent
– But need reliable connection-oriented message

stream transport

• DFS support (compatibility)

Page 85

Caching and Server Communication

• Increase effective performance with
– Caching

• Safe if multiple clients reading, nobody writing

– read-ahead
• Safe if multiple clients reading, nobody writing

– write-behind
• Safe if only one client is accessing file

• Minimize times client informs server of
changes

Page 86

Oplocks

Server grants opportunistic locks (oplocks) to
client

– Oplock tells client how/if it may cache data
– Similar to DFS tokens (but more limited)

Client must request an oplock
– oplock may be

• Granted
• Revoked
• Changed by server

Page 87

Level 1 oplock (exclusive access)

– Client can open file for exclusive access

– Arbitrary caching

– Cache lock information

– Read-ahead

– Write-behind

If another client opens the file, the server has former
client break its oplock:

– Client must send server any lock and write data and
acknowledge that it does not have the lock

– Purge any read-aheads

Page 88

Level 2 oplock (one writer)

– Level 1 oplock is replaced with a Level 2 lock if
another process tries to read the file

– Request this if expect others to read

– Multiple clients may have the same file open as long
as none are writing

– Cache reads, file attributes
• Send other requests to server

Level 2 oplock revoked if another client opens
the file for writing

Page 89

Batch oplock
(remote open even if local closed)

– Client can keep file open on server even if a local
process that was using it has closed the file

• Exclusive R/W open lock + data lock + metadata lock

– Client requests batch oplock if it expects
programs may behave in a way that generates a lot
of traffic (e.g. accessing the same files over and
over)

• Designed for Windows batch files

• Batch oplock revoked if another client opens
the file

Page 90

Filter oplock
(allow preemption)

• Open file for read or write

• Allow clients with filter oplock to be
suspended while another process preempted
file access.
– E.g., indexing service can run and open files

without causing programs to get an error when
they need to open the file

• Indexing service is notified that another process wants
to access the file.

• It can abort its work on the file and close it or finish its
indexing and then close the file.

Page 91

No oplock

– All requests must be sent to the server

– can work from cache only if byte range was locked
by client

Page 92

Naming

• Multiple naming formats supported:

– N:\junk.doc

– \\myserver\users\paul\junk.doc

– file://grumpy.pk.org/users/paul/junk.doc

Page 93

Microsoft Dfs

• “Distributed File System”
– Provides a logical view of files & directories

• Each computer hosts volumes

\\servername\dfsname

Each Dfs tree has one root volume and one level of leaf volumes.

• A volume can consist of multiple shares
– Alternate path: load balancing (read-only)
– Similar to Sun’s automounter

• Dfs = SMB + naming/ability to mount server shares on
other server shares

Page 94

Redirection

• A share can be replicated (read-only) or
moved through Microsoft’s Dfs

• Client opens old location:
– Receives STATUS_DFS_PATH_NOT_COVERED

– Client requests referral:
TRANS2_DFS_GET_REFERRAL

– Server replies with new server

Page 95

CIFS Summary

• A “standard” SMB

• Oplocks mechanism supported in base OS:
Windows NT, 2000, XP

• Oplocks offer flexible control for distributed
consistency

• Dfs offers namespace management

Page 96Page 96

NFS version 4
Network File System

Sun Microsystems

Page 97

NFS version 4 enhancements

• Stateful server

• Compound RPC
– Group operations together

– Receive set of responses

– Reduce round-trip latency

• Stateful open/close operations
– Ensures atomicity of share reservations for

windows file sharing (CIFS)

– Supports exclusive creates

– Client can cache aggressively

Page 98

NFS version 4 enhancements

• create, link, open, remove, rename
– Inform client if the directory changed during the

operation

• Strong security
– Extensible authentication architecture

• File system replication and migration
– To be defined

• No concurrent write sharing or distributed
cache coherence

Page 99

NFS version 4 enhancements

• Server can delegate specific actions on a file
to enable more aggressive client caching
– Similar to CIFS oplocks

• Callbacks
– Notify client when file/directory contents change

Page 100Page 100

Other
(less conventional)

Distributed File Systems

Page 101

Google File System: Application-Specific

• Component failures are the norm
– Thousands of storage machines

– Some are not functional at any given time

• Built from inexpensive commodity components

• Datasets:
– Billions of objects consuming many terabytes

Page 102

Google File System usage needs

• Stores modest number of large files
– Files are huge by traditional standards

• Multi-gigabyte common

– Don’t optimize for small files

• Workload:
– Large streaming reads

– Small random reads

– Most files are modified by appending

– Access is mostly read-only, sequential

• Support concurrent appends

• High sustained bandwidth more important than latency

• Optimize FS API for application
– E.g., atomic append operation

Page 103

Google file system

• GFS cluster
– Multiple chunkservers

• Data storage: fixed-size chunks
• Chunks replicated on several systems (3 replicas)

– One master
• File system metadata
• Mapping of files to chunks

• Clients ask master to look up file
– Get (and cache) chunkserver/chunk ID for file

offset

• Master replication
– Periodic logs and replicas

Page 104

WebDAV

• Not a file system - just a protocol

• Web-based Distributed Authoring [and Versioning]
RFC 2518

• Extension to HTTP to make the Web writable

• New HTTP Methods
– PROPFIND: retrieve properties from a resource, including a

collection (directory) structure
– PROPPATCH: change/delete multiple properties on a

resource
– MKCOL: create a collection (directory)
– COPY: copy a resource from one URI to another
– MOVE: move a resource from one URI to another
– LOCK: lock a resource (shared or exclusive)
– UNLOCK: remove a lock

Page 105

Who uses WebDAV?

• File systems:
– davfs2: Linux file system driver to mount a DAV server as a

file system
• Coda kernel driver and neon for WebDAV communication

– Native filesystem support in OS X (since 10.0)

– Microsoft web folders (since Windows 98)

• Apache HTTP server

• Apple iCal & iDisk

• Jakarta Slide & Tomcat

• KDE Desktop

• Microsoft Exchange & IIS

• SAP NetWeaver

• Many others…

• Check out webdav.org

Page 106

An ad hoc file system using Gmail

• Gmail file system (Richard Jones, 2004)
• User-level

– Python application
– FUSE userland file system interface

• Supports
– Read, write, open, close, stat, symlink, link, unlink, truncate,

rename, directories

• Each message represents a file

– Subject headers contain:

• File system name, filename, pathname, symbolic link info, owner ID,
group ID, size, etc.

– File data stored in attachments
• Files can span multiple attachments

Page 107

Client-server file systems

• Central servers
– Point of congestion, single point of failure

• Alleviate somewhat with replication and client
caching
– E.g., Coda
– Limited replication can lead to congestion
– Separate set of machines to administer

• But … user systems have LOTS of disk space
– (500 GB disks commodity items @ $45)

Page 108

Serverless file systems?

• Use workstations cooperating as peers to
provide file system service

• Any machine can share/cache/control any
block of data

Prototype serverless file system
– xFS from Berkeley demonstrated to be scalable

• Others:
– See Fraunhofer FS (www.fhgfs.com)

Page 109Page 109

The end

