
1

Page 1 Page 1

Distributed File Systems

Paul Krzyzanowski
pxk@cs.rutgers.edu

Distributed Systems

Except as otherwise noted, the content of this presentation is licensed under the Creative Commons
Attribution 2.5 License.

Page 2

Accessing files
FTP, telnet:

–  Explicit access
–  User-directed connection to access remote

resources

We want more transparency
–  Allow user to access remote resources just as local

ones

Focus on file system for now
NAS: Network Attached Storage

Page 3

File service types

Upload/Download model
–  Read file: copy file from server to client
–  Write file: copy file from client to server

Advantage
–  Simple

Problems
–  Wasteful: what if client needs small piece?
–  Problematic: what if client doesn’t have enough space?
–  Consistency: what if others need to modify the same file?

Page 4

File service types

Remote access model
File service provides functional interface:

–  create, delete, read bytes, write bytes, etc…

Advantages:
–  Client gets only what’s needed
–  Server can manage coherent view of file system

Problem:
–  Possible server and network congestion

•  Servers are accessed for duration of file access
•  Same data may be requested repeatedly

Page 5

File server

File Directory Service
–  Maps textual names for file to internal locations

that can be used by file service

File service
–  Provides file access interface to clients

Client module (driver)
–  Client side interface for file and directory service
–  if done right, helps provide access transparency

 e.g. under vnode layer

Page 6 Page 6

Semantics of
file sharing

2

Page 7

Sequential semantics

Read returns result of last write
Easily achieved if

–  Only one server
–  Clients do not cache data

BUT
–  Performance problems if no cache

•  Obsolete data
–  We can write-through

•  Must notify clients holding copies
•  Requires extra state, generates extra traffic

Page 8

Session semantics

Relax the rules
•  Changes to an open file are initially visible

only to the process (or machine) that
modified it.

•  Last process to modify the file wins.

Page 9

Other solutions

Make files immutable
–  Aids in replication
–  Does not help with detecting modification

Or...
Use atomic transactions

–  Each file access is an atomic transaction
–  If multiple transactions start concurrently

•  Resulting modification is serial

Page 10

File usage patterns

•  We can’t have the best of all worlds
•  Where to compromise?

–  Semantics vs. efficiency
–  Efficiency = client performance, network traffic,

server load
•  Understand how files are used
•  1981 study by Satyanarayanan

Page 11

File usage
Most files are <10 Kbytes

–  2005: average size of 385,341 files on my Mac =197 KB
–  2007: average size of 440,519 files on my Mac =451 KB
–  (files accessed within 30 days: 15, 792 files

 80% of files are <47KB)
–  Feasible to transfer entire files (simpler)
–  Still have to support long files

Most files have short lifetimes
–  Perhaps keep them local

Few files are shared
–  Overstated problem
–  Session semantics will cause no problem most of

the time

Page 12 Page 12

System design issues

3

Page 13

How do you access them?

•  Access remote files as local files
•  Remote FS name space should be

syntactically consistent with local name
space
1.  redefine the way all files are named and provide a

syntax for specifying remote files
•  e.g. //server/dir/file
•  Can cause legacy applications to fail

2.  use a file system mounting mechanism
•  Overlay portions of another FS name space over local

name space
•  This makes the remote name space look like it’s part of

the local name space

Page 14

Stateful or stateless design?

Stateful
– Server maintains client-specific state

• Shorter requests
• Better performance in processing requests
• Cache coherence is possible

– Server can know who’s accessing what
• File locking is possible

Page 15

Stateful or stateless design?

Stateless
– Server maintains no information on client accesses

•  Each request must identify file and offsets
•  Server can crash and recover

–  No state to lose
•  Client can crash and recover
• No open/close needed

–  They only establish state
• No server space used for state

–  Don’t worry about supporting many clients
•  Problems if file is deleted on server
•  File locking not possible

Page 16

Caching

Hide latency to improve performance for
repeated accesses

Four places
–  Server’s disk
–  Server’s buffer cache
–  Client’s buffer cache
–  Client’s disk

WARNING:
cache consistency
problems

Page 17

Approaches to caching
•  Write-through

–  What if another client reads its own (out-of-date) cached
copy?

–  All accesses will require checking with server
–  Or … server maintains state and sends invalidations

•  Delayed writes (write-behind)
–  Data can be buffered locally (watch out for consistency –

others won’t see updates!)
–  Remote files updated periodically
–  One bulk wire is more efficient than lots of little writes
–  Problem: semantics become ambiguous

Page 18

Approaches to caching

•  Read-ahead (prefetch)
–  Request chunks of data before it is needed.
–  Minimize wait when it actually is needed.

•  Write on close
–  Admit that we have session semantics.

•  Centralized control
–  Keep track of who has what open and cached on

each node.
–  Stateful file system with signaling traffic.

