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Introduction 
ISTRIBUTED SYSTEMS APPEARED relatively recently in the brief history of computer 
systems. Several factors contributed to this. Computers got smaller and cheaper: we 

can fit more of them in a given space and we can afford to do so. Tens to thousands can 
fit in a box whereas in the past only one would fit in a good-sized room. Their price often 
ranges from less than ten to a few thousand dollars instead of several million dollars. 
More importantly, computers are faster. Network communication takes computational 
effort. A slower computer would spend a greater fraction of its time working on 
communicating rather than working on the user’s program. Couple this with past CPU 
performance and cost and networking just wasn’t viable. Finally, interconnect 
technologies have advanced to the point where it is very easy and inexpensive to connect 
computers together. Over local area networks, we can expect connectivity in the range of 
tens of Mbits/sec to a Gbit/sec. 

Tanenbaum defines a distributed system as a “collection of independent computers that 
appear to the users of the system as a single computer.” There are two essential points in this 
definition. The first is the use of the word independent. This means that, architecturally, the 
machines are capable of operating independently. The second point is that the software 
enables this set of connected machines to appear as a single computer to the users of the 
system. This is known as the single system image and is a major goal in designing 
distributed systems that are easy to maintain and operate. 

Why build them?  
Just because it is easy and inexpensive to connect multiple computers together does not 
necessarily mean that it is a good idea to do so. There are genuine benefits in building 
distributed systems: 

Price/performance ratio. You don't get twice the performance for twice the price in 
buying computers. Processors are only so fast and the price/performance curve 
becomes nonlinear and steep very quickly. With multiple CPUs, we can get 
(almost) double the performance for double the money (as long as we can figure 
out how to keep the processors busy and the overhead negligible). 

Distributing machines may make sense. It makes sense to put the CPUs for ATM cash 
machines at the source, each networked with the bank. Each bank can have one or 

D 



A taxonomy of distributed systems 

Rutgers University – CS 417: Distributed Systems 
©2000-2003 Paul Krzyzanowski  2 

more computers networked with each other and with other banks. For computer 
graphics, it makes sense to put the graphics processing at the user's terminal to 
maximize the bandwidth between the device and processor. 

Computer supported cooperative networking. Users that are geographically separated 
can now work and play together. Examples of this are electronic whiteboards, 
distributed document systems, audio/video teleconferencing, email, file transfer, 
and games such as Doom, Quake, Age of Empires, and Duke Nuke’em, Starcraft, 
and scores of others. 

Increased reliability.  If a small percentage of machines break, the rest of the system 
remains intact and can do useful work.  

Incremental growth. A company may buy a computer. Eventually the workload is too 
great for the machine. The only option is to replace the computer with a faster 
one. Networking allows you to add on to an existing infrastructure.  

Remote services. Users may need to access information held by others at their systems. 
Examples of this include web browsing, remote file access, and programs such as 
Napster and Gnutella to access MP3 music. 

Mobility. Users move around with their laptop computers, Palm Pilots, and WAP 
phones. It is not feasible for them to carry all the information they need with 
them. 

A distributed system has distinct advantages over a set of non-networked smaller 
computers. Data can be shared dynamically – giving private copies (via floppy disk, for 
example) does not work if the data is changing. Peripherals can also be shared. Some 
peripherals are expensive and/or infrequently used so it is not justifiable to give each 
PC a peripheral. These peripherals include optical and tape jukeboxes, typesetters, 
large format color printers and expensive drum scanners. Machines themselves can be 
shared and workload can be distributed amongst idle machines. Finally, networked 
machines are useful for supporting person-to-person networking: exchanging email, 
file transfer, and information access (e.g., the web). As desirable as they may now be, 
distributed systems are not without problems: 

• Designing, implementing and using distributed software may be difficult. Issues 
of creating operating systems and/or languages that support distributed 
systems arise.  

• The network may lose messages and/or become overloaded. Rewiring the 
network can be costly and difficult.  

• Security becomes a far greater concern. Easy and convenient data access from 
anywhere creates security problems.  

Interconnect  
There are different ways in which we can connect CPUs together. The most widely used 
classification scheme (taxonomy) is that created by Flynn in 1972. It classifies machines by 
the number of instruction streams and the number of data streams. An instruction stream 
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refers to the sequence of instructions that the computer processes. Multiple instruction 
streams means that different instructions can be executed concurrently. Data streams 
refer to memory operations. Four combinations are possible: 

 
SISD Single instruction stream, single data stream. This is the traditional 

uniprocessor computer. 
 

SIMD Single instruction stream, multiple data streams. This is an array processor; a 
single instruction operates on many data units in parallel. 
 

MISD Having multiple concurrent instructions operating on a single data element 
makes no sense. This isn't a useful category. 
 

MIMD Multiple instruction stream, multiple data streams. This is a broad category 
covering all forms of machines that contain multiple computers, each with a 
program counter, program, and data. It covers parallel and distributed 
systems.  
 

  
Since the MIMD category is of particular interest to us, we can divide it into further 

classifications. Three areas are of interest to us:  
Memory  

We refer to machines with shared memory as multiprocessors and to machines 
without shared memory as multicomputers. A multiprocessor contains a single 
virtual address space. If one processor writes to a memory location, we expect 
another processor to read the value from that same location. A multicomputer is 
a system in which each machine has its own memory and address space.  

Interconnection network 

Machines can be connected by either a bus or a switched network. On a bus, a 
single network, bus, or cable connects all machines. The bandwidth on the 
interconnection is shared. On a switched network, individual connections exist 
between machines, guaranteeing the full available bandwidth between machines.  

Coupling 

A tightly-coupled system is one where the components tend to be reliably 
connected in close proximity. It is characterized by short message delays, high 
bandwidth, and high total system reliability. A loosely-coupled system is one 
where the components tend to be distributed. Message delays tend to be longer 
and bandwidth tends to be lower than in closely-coupled systems. Reliability 
expectations are that individual components may fail without affecting the 
functionality of other components.  

 
 



A taxonomy of distributed systems 

Rutgers University – CS 417: Distributed Systems 
©2000-2003 Paul Krzyzanowski  4 

CPU CPU memory

 

Figure 1. Bus-based interconnect 

 

Bus-based multiprocessors  
In a bus-based system, all CPUs 

are connected to one bus (Figure 1). 
System memory and peripherals are 
also connected to that bus. If CPU A 
writes a word to memory and CPU B 
can read that word back 
immediately, the memory is 
coherent.  

A bus can get overloaded rather quickly with each CPU accessing the bus for all data 
and instructions. A solution to this is 
to add cache memory between the 
CPU and the bus (Figure 2). The 
cache holds the most recently 
accessed regions of memory. This 
way, the CPU only has to go out to 
the bus to access main memory only 
when the regions are not in its 
cache. 

The problem that arises now is that if two CPUs access the same word (or same region 
of memory) they load it into their respective caches and make future references from 
their cache. Suppose CPU A modifies a memory location. The modification is local to its 
cache so when CPU B reads that memory location, it will not get A’s modification. One 
solution to this is to use a write-through cache. In this case, any write is written not only to 
the cache, but also sent on the bus to main memory. Writes generate bus traffic now, but 
reads generate it only if the data needed is not cached. We expect systems to have far 
more reads than writes.  

This alone is not sufficient, since other CPU caches may still store local copies of data 
that has now been modified. We can solve this by having every cache monitor the bus. If a 
cache sees a write to a memory location that it has cached, it either removes the entry in 
its cache (invalidates it) or updates it with the new data that’s on the bus1. If it ever needs 
that region of memory again, it will have to load it from main memory. This is known as a 
snoopy cache (because it snoops on the bus). 

                                                   
1 This is a design choice. Either way, memory coherence is achieved. 

CPU CPU
memorycache cache

 

Figure 2. Bus-based interconnect with cache 
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Switched multiprocessors  
A bus-based architecture doesn't scale to a large 
number of CPUs (e.g. 64). Using switches 
enables us to achieve a far greater CPU density 
in multiprocessor systems. An m×n crossbar 
switch is a switch that allows any of m elements 
to be switched to any of n elements. A crossbar 
switch contains a crosspoint switch at each 
switching point in the m×n array, so m×n 
crosspoint switches are needed (Figure 3). To 
use a crossbar switch, we place the CPUs on 
one axis (e.g. m) and the break the memory 
into a number of chunks which are placed on 
the second axis (e.g. n memory chunks). There 
will be a delay only when multiple CPUs try to access the same memory group.  

A problem with crossbar switches is that they are expensive: to connect n CPUs with n 
memory modules requires n2 crosspoint switches. We'd like an alternative to using this 
many switches. To reduce the number of switches and maintain the same connectivity 
requires increasing the number of switching stages. This results in an omega network 
(Figure 4), which, for a system of n CPUs and n memory modules, requires logn (base 2) 
switching stages, each with n/2 switches for a total of (nlogn)/2 switches. This is better 

than n2 but can still amount to many switches. As 
we add more switching stages, we find that our 
delay increases. With 1024 CPUs and memories, 
we have to pass through ten switching stages to 
get to the memory and through ten to get back.  

To try to avoid these delays, we can use a 
hierarchical memory access system: each CPU 
can access its own memory quickly but accessing 
other CPU's memory takes longer. This is 
known as a Non-Uniform Memory Access, or 
NUMA, architecture. It provides better average 
access time but placement of code and data to 
optimize performance becomes difficult.  

Bus-based multicomputers  
Bus-based multicomputers are easier to design in that we don't need to contend with 
issues of shared memory: every CPU simply has its own local memory. However, without 
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shared memory, some other communication mechanism is needed so that processes can 
communicate and synchronize as needed. The communication network between the two 
is a bus (for example, an Ethernet local area network). The traffic requirements are 
typically far lower than those for memory access (so more systems can be attached to the 
bus). A bus can either be a system bus or a local area network2. Bus-based multicomputers 
most commonly manifest themselves as a collection of workstations on a local area 
network.  

Switched multicomputers  
In a switched multicomputer system, each CPU still has its own local memory but it also 
has a switched interconnect to its neighbors. Common arrangements are a grid, cube, or 
hypercube network. Only nearest neighbors are connected in this network; messages to 
others require multiple hops.  

Software issues  
The software design goal in building a distributed system is to create a Single System 
Image - have a collection of independent computers appear as a single system to the 
user(s). By single system, we refer to creating a system in which the user is not aware of 
the presence of multiple computers or of distribution.  

In discussing software for distributed systems, it makes sense to distinguish loosely-
coupled vs. tightly-coupled software. While this is a continuum without demarcation, by 
loosely-coupled we refer to software in which the systems interact with each other to a 
limited extent as needed. For the most part, they operate as fully-functioning stand-alone 
machines. If the network goes down, things are pretty much functional. Loosely coupled 
systems may be ones in which there are shared devices or services (parts of file service, 
web service). With tightly-coupled software, there is a strong dependence on other 
machines for all aspects of the system. Essentially, both the interconnect and functioning 
of the remote systems are necessary for the local system's operation.  

The most common distributed systems today are those with loosely-coupled software 
and loosely coupled hardware. The quintessential example is that of workstations (each 
with its own CPU and operating system) on a LAN. Interaction is often primitive explicit 
interaction, with programs such as rcp and rlogin. File servers may also be present, 
which accept requests for files and provide the data. There is a high degree of autonomy 
and few system-wide requirements.  

The next step in building distributed systems is placing tightly-coupled software on 
loosely-coupled hardware. With this structure we attempt to make a network of machines 

                                                   
2 System busses generally have speeds of about 300 Mbps – 1 Gbps. Typical speeds for local area networks are 
from 10 Mbps to 1 Gbps, with some operating in the Kbps and low megabit per seconds range (for infrared 
and wireless). 
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appear as one single timesharing system, realizing the single system image. Users should 
not be aware of the fact that the machine is distributed and contains multiple CPUs. If we 
succeed in this, we will have a true distributed system. To accomplish this, we need certain 
capabilities:  

• A single global IPC mechanism (any process should be able to talk to any other 
process in the same manner, whether it's local or remote).  

• A global protection scheme.  
• Uniform naming from anywhere; the file system should look the same.  
• Same system call interface everywhere.  

The kernel on each machine is responsible for controlling its own resources (such as 
doing its own memory management/paging).  

Multiprocessor time-sharing systems employing tightly-coupled hardware and software 
are rather common. Since memory is shared, all operating system structures can be 
shared. In fact, as long as critical sections are properly taken care of, a traditional 
uniprocessor system does not need a great deal of modification. A single run queue is 
employed amongst all the processors. When a CPU is ready to call the scheduler, it 
accesses the single run queue (exclusively, of course). The file system interface can 
remain as is (with a shared buffer cache) as can the system call interface (traps).  

Design issues 
There are a number of issues with which a designer of a distributed system has to 
contend. Tanenbaum enumerates them: 

Transparency  
At the high levels, transparency means hiding distribution from the users. At the 
low levels, transparency means hiding the distribution from the programs. There 
are several forms of transparency:  

Location transparency  
Users don't care where the resources are located.  

Migration transparency  
Resources may move at will.  

Replication transparency  
Users cannot tell whether there are multiple copies of the same resource.  

Concurrency transparency  
Users share resources transparently with each other without interference.  

Parallelism transparency  
Operations can take place in parallel without the users knowing.  

Flexibility  
It should be easy to develop distributed systems. One popular approach is 
through the use of a microkernel. A microkernel is a departure from the 
monolithic operating systems that try to handle all system requests. Instead, it 
supports only the very basic operations: IPC, some memory management, a small 
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amount of process management, and low-level I/O. All else is performed by user-
level servers.  

Reliability  
We strive for building highly reliable and highly available systems. Availability is 
the fraction of time that a system is usable. We can achieve it through 
redundancy and not requiring the simultaneous functioning of a large number 
of components. Reliability encompasses a few factors: data must not get lost, the 
system must be secure, and the system must be fault tolerant.  

Performance  
We have to understand the environment in which the system may operate. The 
communication links may be slow and affect network performance. If we exploit 
parallelism, it may be on a fine grain (within a procedure, array ops, etc.) or a 
coarse grain (procedure level, service level).  

Scalability  
We'd like a distributed system to scale indefinitely. This generally won't be 
possible, but the extent of scalability will always be a consideration. In evaluating 
algorithms, we'd like to consider distributable algorithms vs. centralized ones. 

Service models 
Computers can perform various functions and each unit in a distributed system may be 
responsible for only a set number of functions in an organization. We consider the 
concept of service models as a taxonomy of system configurations. 

Centralized model 
A centralized model (Figure 5) is one 
in which there is no networking. All 
aspects of the application are hosted 
on one machine and users directly 
connect to that machine. This is 
epitomized by the classic mainframe 
time-sharing system. The computer 
may contain one or more CPUs and 
users communicate with it via terminals 
that have a direct (e.g., serial) 
connection to it. 

The main problem with the centralized model is that it is not easily scalable. There is a 
limit to the number of CPUs in a system and eventually the entire system needs to be 
upgraded or replaced. A centralized system has a problem of multiple entities contending 
for the same resource (e.g. CPUs for the system bus). 

Figure 5. Centralized model 
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Client-server model 
The client-server model (Figure 6) is a 
popular networked model consisting of 
three components. A service is the task 
that a particular machine can perform. 
For example, offering files over a 
network, the ability to execute certain 
commands, or routing data to a printer. 
A server is the machine that performs 
the task (the machine that hosts the 
service). A machine that is primarily 
recognized for the service it provides is 
often referred to as a print server, file server, et al. The client is a machine that is 
requesting the service. The labels client and server are within the context of a particular 
service; a client can also be a server. 

A particular case of the client-server model is the workstation model, where clients are 
generally computers that are used by one user at a time (e.g. a PC on a network). 

Peer-to-peer model 
The client-server model assumes that certain machines are better suited for providing 
certain services. For instance, a file server may be a system with a large amount of disk 
space and backup facilities. A peer-to-peer model (Figure 7) assumes that each machine 
has somewhat equivalent capabilities, that no 
machine is dedicated to serving others. An 
example of this is a collection of PCs in a small 
office or home. Networking allows people to 
access each other’s files and send email but no 
machine is relegated to a specific set of services.  

Thin and thick clients 
We can further explore the client-server environment by considering the partitioning of 
software between the client and the server: what fraction of the task does the client 
process before giving the work to the server? There are two schools of design, identified as 
thin client and thick client. 

A thin client is designed around the premise that the amount of client software should 
be small and the bulk of processing takes place on the servers. Initially, the term referred 
to only software partitioning, but because the software requirements are minimal, less 
hardware is needed to run the software. Now, thin client can also refer to a client 
computing machine that needs not be the best and fastest available technology to 
perform its task acceptably. Examples of thin clients are an X terminal (e.g., an NCD X 

client of print server
and file server

client of file server

directory server print server file server Disk array

Figure 6. Client-server model 

Marge's PCLisa's PC Bart's PC Homer's PC

Figure 7. Peer-to-peer model 
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terminal, a PC dedicated to running exceed), a Network PC (NetPC, proposed by Intel 
and Microsoft), Oracle and Sun’s Network Computer (NC), perhaps running a Java-based 
operating system, and systems like the Netpliance. With thin clients, there is no need for 
much administration, expansion slots, CDs, or even disks. The thin client can be 
considered to be an information appliance (wireless device, or set-top box) that only needs 
connectivity to resource-rich networking. 

The opposite of a thin client is a thick client (or fat client). In this configuration, the 
client performs the bulk of data processing operations. A server may perform rather 
rudimentary tasks such as storing and retrieving data. Today’s Microsoft/Intel-dominated 
PC world is an example of thick clients. Servers are useful (providing web service or file 
storage service), but the bulk of data processing generally takes place on the client (e.g. 
word processing, spreadsheets). This creates an ever-increasing need for faster processors 
(thanks to forever-bloating software), high capacity storage devices (thanks also to the 
bloatware), and a very significant amount of system configuration and administration). An 
argument for thin-clients is that work is offloaded from the clients, allowing users to treat 
their systems as appliances and not hassle with administrative aspects or constant 
upgrades. In defense of thick-clients, computers and related peripherals are becoming 
ever faster and cheaper. What is the point of off-loading computation on a server when 
the client is amply capable of performing it without burdening the server or forcing the 
user to deal with network latencies? 

Multi-tier client-server architectures 
For certain services, it may make sense to have a 
hierarchy of connectivity. For instance, a server, 
in performing its task, may contact a server of a 
different type. This leads us to examine multi-
tier architectures. The traditional client-server 
architecture is a two-tier architecture (Figure 8). The user interface generally runs on a 
user’s desktop and application services are provided by a server (for example, a database). 
In this architecture, performance often suffers with large user communities (e.g., 
hundreds). The server may end up spending too much time managing connections and 
serving static content and does not have enough cycles left to perform the needed work in 
a timely manner. In addition, certain services themselves may be performance hogs and 
contend for the now-precious CPU resource. Moreover, many legacy services (e.g., 
banking) may have to run on certain 
environments that may be poorly adapted 
to networked applications. 

These problems led to a popular 
design known as a three-tier architecture 
(Figure 9). Here, a middle tier is added 
between the client providing the user 

client
(User Interface) server

(web server, database,
stored procedures,
application logic)

network

Figure 8. Two-tier architecture 
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(User Interface) back-end
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network

server
(web server,

database queueing)

Figure 9. Three-tier architecture 
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interface and the application server. The middle tier can perform: 
- queuing and scheduling of user requests 
- connection management and format conversions 
- application execution (with connections to a back-end database or legacy 

application) 
It may also employ a Transaction Processor (TP) monitor to queue messages and 
schedule back-end database transactions. There is no need to stop at three tiers. 
Depending on the service to be provided, it may make sense to employ additional tiers. 
For example, a common infrastructure used in may of today’s web sites has a web server 
(responsible for getting connections and serving static content) talking to an application 
server (running business logic implemented, for example, as java servlets), which in turn 
talks to a transaction processor that coordinates activity amongst a number of back-end 
databases. 

Processor-pool model 
One issue that has not been addressed thus far is that of idle workstations, or computing 
resources. One option is to simply ignore them: it is no longer a sin to let computers sit 
idle. Another option is to use all available computing resources for running jobs. In the 
most intelligent case, an operating system can automatically start processes on idle 
machines and even migrate processes to machines with the most available CPU cycles. In a 
less intelligent case, a user may be able to manually start or move processes on available 
systems. Going one step further, and realizing the low cost of processors, what if there was 
a lot of computing power available to the user  (for example, dozens or hundreds of CPUs 
per user)? This leads us to the processor pool model. In this model, we maintain a 
collection of CPUs that can be dynamically assigned to processes on demand. This 
collection need not be the set of idle workstations. We can have racks of CPUs connected 
to a high-speed network with the end-users only having thin clients: machine suitable for 
managing input and output (X servers, graphical workstations, PCs). 

 
 

 
 


