
Rutgers University – CS 417: Distributed Systems
 ©2000-2003 Paul Krzyzanowski 1

Lectures on distributed systems:

A taxonomy of distributed systems

Paul Krzyzanowski

Introduction
ISTRIBUTED SYSTEMS APPEARED relatively recently in the brief history of computer
systems. Several factors contributed to this. Computers got smaller and cheaper: we

can fit more of them in a given space and we can afford to do so. Tens to thousands can
fit in a box whereas in the past only one would fit in a good-sized room. Their price often
ranges from less than ten to a few thousand dollars instead of several million dollars.
More importantly, computers are faster. Network communication takes computational
effort. A slower computer would spend a greater fraction of its time working on
communicating rather than working on the user’s program. Couple this with past CPU
performance and cost and networking just wasn’t viable. Finally, interconnect
technologies have advanced to the point where it is very easy and inexpensive to connect
computers together. Over local area networks, we can expect connectivity in the range of
tens of Mbits/sec to a Gbit/sec.

Tanenbaum defines a distributed system as a “collection of independent computers that
appear to the users of the system as a single computer.” There are two essential points in this
definition. The first is the use of the word independent. This means that, architecturally, the
machines are capable of operating independently. The second point is that the software
enables this set of connected machines to appear as a single computer to the users of the
system. This is known as the single system image and is a major goal in designing
distributed systems that are easy to maintain and operate.

Why build them?
Just because it is easy and inexpensive to connect multiple computers together does not
necessarily mean that it is a good idea to do so. There are genuine benefits in building
distributed systems:

Price/performance ratio. You don't get twice the performance for twice the price in
buying computers. Processors are only so fast and the price/performance curve
becomes nonlinear and steep very quickly. With multiple CPUs, we can get
(almost) double the performance for double the money (as long as we can figure
out how to keep the processors busy and the overhead negligible).

Distributing machines may make sense. It makes sense to put the CPUs for ATM cash
machines at the source, each networked with the bank. Each bank can have one or

D

A taxonomy of distributed systems

Rutgers University – CS 417: Distributed Systems
©2000-2003 Paul Krzyzanowski 2

more computers networked with each other and with other banks. For computer
graphics, it makes sense to put the graphics processing at the user's terminal to
maximize the bandwidth between the device and processor.

Computer supported cooperative networking. Users that are geographically separated
can now work and play together. Examples of this are electronic whiteboards,
distributed document systems, audio/video teleconferencing, email, file transfer,
and games such as Doom, Quake, Age of Empires, and Duke Nuke’em, Starcraft,
and scores of others.

Increased reliability. If a small percentage of machines break, the rest of the system
remains intact and can do useful work.

Incremental growth. A company may buy a computer. Eventually the workload is too
great for the machine. The only option is to replace the computer with a faster
one. Networking allows you to add on to an existing infrastructure.

Remote services. Users may need to access information held by others at their systems.
Examples of this include web browsing, remote file access, and programs such as
Napster and Gnutella to access MP3 music.

Mobility. Users move around with their laptop computers, Palm Pilots, and WAP
phones. It is not feasible for them to carry all the information they need with
them.

A distributed system has distinct advantages over a set of non-networked smaller
computers. Data can be shared dynamically – giving private copies (via floppy disk, for
example) does not work if the data is changing. Peripherals can also be shared. Some
peripherals are expensive and/or infrequently used so it is not justifiable to give each
PC a peripheral. These peripherals include optical and tape jukeboxes, typesetters,
large format color printers and expensive drum scanners. Machines themselves can be
shared and workload can be distributed amongst idle machines. Finally, networked
machines are useful for supporting person-to-person networking: exchanging email,
file transfer, and information access (e.g., the web). As desirable as they may now be,
distributed systems are not without problems:

• Designing, implementing and using distributed software may be difficult. Issues
of creating operating systems and/or languages that support distributed
systems arise.

• The network may lose messages and/or become overloaded. Rewiring the
network can be costly and difficult.

• Security becomes a far greater concern. Easy and convenient data access from
anywhere creates security problems.

Interconnect
There are different ways in which we can connect CPUs together. The most widely used
classification scheme (taxonomy) is that created by Flynn in 1972. It classifies machines by
the number of instruction streams and the number of data streams. An instruction stream

A taxonomy of distributed systems

Rutgers University – CS 417: Distributed Systems
©2000-2003 Paul Krzyzanowski 3

refers to the sequence of instructions that the computer processes. Multiple instruction
streams means that different instructions can be executed concurrently. Data streams
refer to memory operations. Four combinations are possible:

SISD Single instruction stream, single data stream. This is the traditional

uniprocessor computer.

SIMD Single instruction stream, multiple data streams. This is an array processor; a
single instruction operates on many data units in parallel.

MISD Having multiple concurrent instructions operating on a single data element
makes no sense. This isn't a useful category.

MIMD Multiple instruction stream, multiple data streams. This is a broad category
covering all forms of machines that contain multiple computers, each with a
program counter, program, and data. It covers parallel and distributed
systems.

Since the MIMD category is of particular interest to us, we can divide it into further

classifications. Three areas are of interest to us:
Memory

We refer to machines with shared memory as multiprocessors and to machines
without shared memory as multicomputers. A multiprocessor contains a single
virtual address space. If one processor writes to a memory location, we expect
another processor to read the value from that same location. A multicomputer is
a system in which each machine has its own memory and address space.

Interconnection network

Machines can be connected by either a bus or a switched network. On a bus, a
single network, bus, or cable connects all machines. The bandwidth on the
interconnection is shared. On a switched network, individual connections exist
between machines, guaranteeing the full available bandwidth between machines.

Coupling

A tightly-coupled system is one where the components tend to be reliably
connected in close proximity. It is characterized by short message delays, high
bandwidth, and high total system reliability. A loosely-coupled system is one
where the components tend to be distributed. Message delays tend to be longer
and bandwidth tends to be lower than in closely-coupled systems. Reliability
expectations are that individual components may fail without affecting the
functionality of other components.

A taxonomy of distributed systems

Rutgers University – CS 417: Distributed Systems
©2000-2003 Paul Krzyzanowski 4

CPU CPU memory

Figure 1. Bus-based interconnect

Bus-based multiprocessors
In a bus-based system, all CPUs

are connected to one bus (Figure 1).
System memory and peripherals are
also connected to that bus. If CPU A
writes a word to memory and CPU B
can read that word back
immediately, the memory is
coherent.

A bus can get overloaded rather quickly with each CPU accessing the bus for all data
and instructions. A solution to this is
to add cache memory between the
CPU and the bus (Figure 2). The
cache holds the most recently
accessed regions of memory. This
way, the CPU only has to go out to
the bus to access main memory only
when the regions are not in its
cache.

The problem that arises now is that if two CPUs access the same word (or same region
of memory) they load it into their respective caches and make future references from
their cache. Suppose CPU A modifies a memory location. The modification is local to its
cache so when CPU B reads that memory location, it will not get A’s modification. One
solution to this is to use a write-through cache. In this case, any write is written not only to
the cache, but also sent on the bus to main memory. Writes generate bus traffic now, but
reads generate it only if the data needed is not cached. We expect systems to have far
more reads than writes.

This alone is not sufficient, since other CPU caches may still store local copies of data
that has now been modified. We can solve this by having every cache monitor the bus. If a
cache sees a write to a memory location that it has cached, it either removes the entry in
its cache (invalidates it) or updates it with the new data that’s on the bus1. If it ever needs
that region of memory again, it will have to load it from main memory. This is known as a
snoopy cache (because it snoops on the bus).

1 This is a design choice. Either way, memory coherence is achieved.

CPU CPU
memorycache cache

Figure 2. Bus-based interconnect with cache

A taxonomy of distributed systems

Rutgers University – CS 417: Distributed Systems
©2000-2003 Paul Krzyzanowski 5

Switched multiprocessors
A bus-based architecture doesn't scale to a large
number of CPUs (e.g. 64). Using switches
enables us to achieve a far greater CPU density
in multiprocessor systems. An m×n crossbar
switch is a switch that allows any of m elements
to be switched to any of n elements. A crossbar
switch contains a crosspoint switch at each
switching point in the m×n array, so m×n
crosspoint switches are needed (Figure 3). To
use a crossbar switch, we place the CPUs on
one axis (e.g. m) and the break the memory
into a number of chunks which are placed on
the second axis (e.g. n memory chunks). There
will be a delay only when multiple CPUs try to access the same memory group.

A problem with crossbar switches is that they are expensive: to connect n CPUs with n
memory modules requires n2 crosspoint switches. We'd like an alternative to using this
many switches. To reduce the number of switches and maintain the same connectivity
requires increasing the number of switching stages. This results in an omega network
(Figure 4), which, for a system of n CPUs and n memory modules, requires logn (base 2)
switching stages, each with n/2 switches for a total of (nlogn)/2 switches. This is better

than n2 but can still amount to many switches. As
we add more switching stages, we find that our
delay increases. With 1024 CPUs and memories,
we have to pass through ten switching stages to
get to the memory and through ten to get back.

To try to avoid these delays, we can use a
hierarchical memory access system: each CPU
can access its own memory quickly but accessing
other CPU's memory takes longer. This is
known as a Non-Uniform Memory Access, or
NUMA, architecture. It provides better average
access time but placement of code and data to
optimize performance becomes difficult.

Bus-based multicomputers
Bus-based multicomputers are easier to design in that we don't need to contend with
issues of shared memory: every CPU simply has its own local memory. However, without

memorymemory memory

CPU

CPU

CPU

CPU

crosspoint switch

Figure 3. Crossbar interconnect

memory

memory

memory

CPU

CPU

CPU

CPU memory

2×2 switch

Figure 4. Omega interconnect

A taxonomy of distributed systems

Rutgers University – CS 417: Distributed Systems
©2000-2003 Paul Krzyzanowski 6

shared memory, some other communication mechanism is needed so that processes can
communicate and synchronize as needed. The communication network between the two
is a bus (for example, an Ethernet local area network). The traffic requirements are
typically far lower than those for memory access (so more systems can be attached to the
bus). A bus can either be a system bus or a local area network2. Bus-based multicomputers
most commonly manifest themselves as a collection of workstations on a local area
network.

Switched multicomputers
In a switched multicomputer system, each CPU still has its own local memory but it also
has a switched interconnect to its neighbors. Common arrangements are a grid, cube, or
hypercube network. Only nearest neighbors are connected in this network; messages to
others require multiple hops.

Software issues
The software design goal in building a distributed system is to create a Single System
Image - have a collection of independent computers appear as a single system to the
user(s). By single system, we refer to creating a system in which the user is not aware of
the presence of multiple computers or of distribution.

In discussing software for distributed systems, it makes sense to distinguish loosely-
coupled vs. tightly-coupled software. While this is a continuum without demarcation, by
loosely-coupled we refer to software in which the systems interact with each other to a
limited extent as needed. For the most part, they operate as fully-functioning stand-alone
machines. If the network goes down, things are pretty much functional. Loosely coupled
systems may be ones in which there are shared devices or services (parts of file service,
web service). With tightly-coupled software, there is a strong dependence on other
machines for all aspects of the system. Essentially, both the interconnect and functioning
of the remote systems are necessary for the local system's operation.

The most common distributed systems today are those with loosely-coupled software
and loosely coupled hardware. The quintessential example is that of workstations (each
with its own CPU and operating system) on a LAN. Interaction is often primitive explicit
interaction, with programs such as rcp and rlogin. File servers may also be present,
which accept requests for files and provide the data. There is a high degree of autonomy
and few system-wide requirements.

The next step in building distributed systems is placing tightly-coupled software on
loosely-coupled hardware. With this structure we attempt to make a network of machines

2 System busses generally have speeds of about 300 Mbps – 1 Gbps. Typical speeds for local area networks are
from 10 Mbps to 1 Gbps, with some operating in the Kbps and low megabit per seconds range (for infrared
and wireless).

A taxonomy of distributed systems

Rutgers University – CS 417: Distributed Systems
©2000-2003 Paul Krzyzanowski 7

appear as one single timesharing system, realizing the single system image. Users should
not be aware of the fact that the machine is distributed and contains multiple CPUs. If we
succeed in this, we will have a true distributed system. To accomplish this, we need certain
capabilities:

• A single global IPC mechanism (any process should be able to talk to any other
process in the same manner, whether it's local or remote).

• A global protection scheme.
• Uniform naming from anywhere; the file system should look the same.
• Same system call interface everywhere.

The kernel on each machine is responsible for controlling its own resources (such as
doing its own memory management/paging).

Multiprocessor time-sharing systems employing tightly-coupled hardware and software
are rather common. Since memory is shared, all operating system structures can be
shared. In fact, as long as critical sections are properly taken care of, a traditional
uniprocessor system does not need a great deal of modification. A single run queue is
employed amongst all the processors. When a CPU is ready to call the scheduler, it
accesses the single run queue (exclusively, of course). The file system interface can
remain as is (with a shared buffer cache) as can the system call interface (traps).

Design issues
There are a number of issues with which a designer of a distributed system has to
contend. Tanenbaum enumerates them:

Transparency
At the high levels, transparency means hiding distribution from the users. At the
low levels, transparency means hiding the distribution from the programs. There
are several forms of transparency:

Location transparency
Users don't care where the resources are located.

Migration transparency
Resources may move at will.

Replication transparency
Users cannot tell whether there are multiple copies of the same resource.

Concurrency transparency
Users share resources transparently with each other without interference.

Parallelism transparency
Operations can take place in parallel without the users knowing.

Flexibility
It should be easy to develop distributed systems. One popular approach is
through the use of a microkernel. A microkernel is a departure from the
monolithic operating systems that try to handle all system requests. Instead, it
supports only the very basic operations: IPC, some memory management, a small

A taxonomy of distributed systems

Rutgers University – CS 417: Distributed Systems
©2000-2003 Paul Krzyzanowski 8

amount of process management, and low-level I/O. All else is performed by user-
level servers.

Reliability
We strive for building highly reliable and highly available systems. Availability is
the fraction of time that a system is usable. We can achieve it through
redundancy and not requiring the simultaneous functioning of a large number
of components. Reliability encompasses a few factors: data must not get lost, the
system must be secure, and the system must be fault tolerant.

Performance
We have to understand the environment in which the system may operate. The
communication links may be slow and affect network performance. If we exploit
parallelism, it may be on a fine grain (within a procedure, array ops, etc.) or a
coarse grain (procedure level, service level).

Scalability
We'd like a distributed system to scale indefinitely. This generally won't be
possible, but the extent of scalability will always be a consideration. In evaluating
algorithms, we'd like to consider distributable algorithms vs. centralized ones.

Service models
Computers can perform various functions and each unit in a distributed system may be
responsible for only a set number of functions in an organization. We consider the
concept of service models as a taxonomy of system configurations.

Centralized model
A centralized model (Figure 5) is one
in which there is no networking. All
aspects of the application are hosted
on one machine and users directly
connect to that machine. This is
epitomized by the classic mainframe
time-sharing system. The computer
may contain one or more CPUs and
users communicate with it via terminals
that have a direct (e.g., serial)
connection to it.

The main problem with the centralized model is that it is not easily scalable. There is a
limit to the number of CPUs in a system and eventually the entire system needs to be
upgraded or replaced. A centralized system has a problem of multiple entities contending
for the same resource (e.g. CPUs for the system bus).

Figure 5. Centralized model

A taxonomy of distributed systems

Rutgers University – CS 417: Distributed Systems
©2000-2003 Paul Krzyzanowski 9

Client-server model
The client-server model (Figure 6) is a
popular networked model consisting of
three components. A service is the task
that a particular machine can perform.
For example, offering files over a
network, the ability to execute certain
commands, or routing data to a printer.
A server is the machine that performs
the task (the machine that hosts the
service). A machine that is primarily
recognized for the service it provides is
often referred to as a print server, file server, et al. The client is a machine that is
requesting the service. The labels client and server are within the context of a particular
service; a client can also be a server.

A particular case of the client-server model is the workstation model, where clients are
generally computers that are used by one user at a time (e.g. a PC on a network).

Peer-to-peer model
The client-server model assumes that certain machines are better suited for providing
certain services. For instance, a file server may be a system with a large amount of disk
space and backup facilities. A peer-to-peer model (Figure 7) assumes that each machine
has somewhat equivalent capabilities, that no
machine is dedicated to serving others. An
example of this is a collection of PCs in a small
office or home. Networking allows people to
access each other’s files and send email but no
machine is relegated to a specific set of services.

Thin and thick clients
We can further explore the client-server environment by considering the partitioning of
software between the client and the server: what fraction of the task does the client
process before giving the work to the server? There are two schools of design, identified as
thin client and thick client.

A thin client is designed around the premise that the amount of client software should
be small and the bulk of processing takes place on the servers. Initially, the term referred
to only software partitioning, but because the software requirements are minimal, less
hardware is needed to run the software. Now, thin client can also refer to a client
computing machine that needs not be the best and fastest available technology to
perform its task acceptably. Examples of thin clients are an X terminal (e.g., an NCD X

client of print server
and file server

client of file server

directory server print server file server Disk array

Figure 6. Client-server model

Marge's PCLisa's PC Bart's PC Homer's PC

Figure 7. Peer-to-peer model

A taxonomy of distributed systems

Rutgers University – CS 417: Distributed Systems
©2000-2003 Paul Krzyzanowski 10

terminal, a PC dedicated to running exceed), a Network PC (NetPC, proposed by Intel
and Microsoft), Oracle and Sun’s Network Computer (NC), perhaps running a Java-based
operating system, and systems like the Netpliance. With thin clients, there is no need for
much administration, expansion slots, CDs, or even disks. The thin client can be
considered to be an information appliance (wireless device, or set-top box) that only needs
connectivity to resource-rich networking.

The opposite of a thin client is a thick client (or fat client). In this configuration, the
client performs the bulk of data processing operations. A server may perform rather
rudimentary tasks such as storing and retrieving data. Today’s Microsoft/Intel-dominated
PC world is an example of thick clients. Servers are useful (providing web service or file
storage service), but the bulk of data processing generally takes place on the client (e.g.
word processing, spreadsheets). This creates an ever-increasing need for faster processors
(thanks to forever-bloating software), high capacity storage devices (thanks also to the
bloatware), and a very significant amount of system configuration and administration). An
argument for thin-clients is that work is offloaded from the clients, allowing users to treat
their systems as appliances and not hassle with administrative aspects or constant
upgrades. In defense of thick-clients, computers and related peripherals are becoming
ever faster and cheaper. What is the point of off-loading computation on a server when
the client is amply capable of performing it without burdening the server or forcing the
user to deal with network latencies?

Multi-tier client-server architectures
For certain services, it may make sense to have a
hierarchy of connectivity. For instance, a server,
in performing its task, may contact a server of a
different type. This leads us to examine multi-
tier architectures. The traditional client-server
architecture is a two-tier architecture (Figure 8). The user interface generally runs on a
user’s desktop and application services are provided by a server (for example, a database).
In this architecture, performance often suffers with large user communities (e.g.,
hundreds). The server may end up spending too much time managing connections and
serving static content and does not have enough cycles left to perform the needed work in
a timely manner. In addition, certain services themselves may be performance hogs and
contend for the now-precious CPU resource. Moreover, many legacy services (e.g.,
banking) may have to run on certain
environments that may be poorly adapted
to networked applications.

These problems led to a popular
design known as a three-tier architecture
(Figure 9). Here, a middle tier is added
between the client providing the user

client
(User Interface) server

(web server, database,
stored procedures,
application logic)

network

Figure 8. Two-tier architecture

client
(User Interface) back-end

legacy database

network

server
(web server,

database queueing)

Figure 9. Three-tier architecture

A taxonomy of distributed systems

Rutgers University – CS 417: Distributed Systems
©2000-2003 Paul Krzyzanowski 11

interface and the application server. The middle tier can perform:
- queuing and scheduling of user requests
- connection management and format conversions
- application execution (with connections to a back-end database or legacy

application)
It may also employ a Transaction Processor (TP) monitor to queue messages and
schedule back-end database transactions. There is no need to stop at three tiers.
Depending on the service to be provided, it may make sense to employ additional tiers.
For example, a common infrastructure used in may of today’s web sites has a web server
(responsible for getting connections and serving static content) talking to an application
server (running business logic implemented, for example, as java servlets), which in turn
talks to a transaction processor that coordinates activity amongst a number of back-end
databases.

Processor-pool model
One issue that has not been addressed thus far is that of idle workstations, or computing
resources. One option is to simply ignore them: it is no longer a sin to let computers sit
idle. Another option is to use all available computing resources for running jobs. In the
most intelligent case, an operating system can automatically start processes on idle
machines and even migrate processes to machines with the most available CPU cycles. In a
less intelligent case, a user may be able to manually start or move processes on available
systems. Going one step further, and realizing the low cost of processors, what if there was
a lot of computing power available to the user (for example, dozens or hundreds of CPUs
per user)? This leads us to the processor pool model. In this model, we maintain a
collection of CPUs that can be dynamically assigned to processes on demand. This
collection need not be the set of idle workstations. We can have racks of CPUs connected
to a high-speed network with the end-users only having thin clients: machine suitable for
managing input and output (X servers, graphical workstations, PCs).

