Week 8: Authentication: CAPTCHA
Combined Authentication & Key Exchange
Goals

• Authenticate principals
• Distribute a session key to both securely
• Principals can communicate only if they are properly authenticated

Authentication relies on proving you know your secret key
Symmetric Key Authentication & Key Exchange

- We use a trusted third party (Trent) who knows all the keys

I’d like to talk with Bob

Request a session key

Get encrypted key + ticket
We use a trusted third party (Trent) who knows all the keys.

Send the ticket (key):

Let's talk:
Guard against replay attacks

- **Needham-Schroeder: add nonces in encrypted messages**
 - Random numbers will be different with different sessions
 - Messages from old sessions will be rejected

Guard against attacker who knows an old session key

- **Add timestamps in encrypted messages**
 - Attacker's replayed messages will have an older timestamp – and be rejected

- **Add IDs (sequence numbers) in encrypted messages**
 - Attacker's replayed messages will have the wrong number – and be rejected
Public Key Authentication & Key Exchange

- No need for a third party – public keys can reside in X.509 certificates
- Prove you have your private key

Bob, can you encrypt this random number with your private key?

Bob's Certificate

$D_B(r_1) \equiv r_1$

Alice is convinced Bob has Bob's private key
Public Key Authentication – mutual authentication

- No need for a third party – public keys can reside in X.509 certificates
- Prove you have your private key

Alice, can you encrypt this random number with your private key?

Bob is convinced Alice has Alice's private key

Bob's Certificate

$D_A(r_2) \equiv r_2$
Public Key Authentication – key exchange

- Encrypt a session key with the other party's public key.

Here's a session key we can use

Let's talk
User Authentication
Three Factors of Authentication

<table>
<thead>
<tr>
<th>Factor</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ownership</td>
<td>Key, card</td>
</tr>
<tr>
<td>Something you have</td>
<td></td>
</tr>
<tr>
<td>2. Knowledge</td>
<td>Passwords, PINs</td>
</tr>
<tr>
<td>Something you know</td>
<td></td>
</tr>
<tr>
<td>3. Inherence</td>
<td>Biometrics (face, fingerprints)</td>
</tr>
<tr>
<td>Something you are</td>
<td></td>
</tr>
</tbody>
</table>
User authentication protocols

• **Password Authentication Protocol (PAP)**
 – User: \{ name, password \}
 – Server: $lookup(name) \neq password$

• **Hashed password storage**
 – User: \{ name, password \}
 – Server: $lookup(name) \neq hash(password)$

• **Hashed passwords with salt**
 – User: \{ name, password \}
 – Server: $lookup(name) \Rightarrow salt, stored_{password} \quad hash(stored_{password}) \neq hash(salt || password)$
One-time passwords

• **Sequence-based**
 - **S/key:**
 - $P_1 = \text{hash}(R)$, $P_2 = \text{hash}(P_1)$, $P_3 = \text{hash}(P_2)$, $P_4 = \text{hash}(P_3)$, …
 - User: { name, P_n }
 - Server:
 - $\text{lookup(name)} \equiv \text{hash}(P_n)$
 - update database: name.password = P_n

• **Challenge-Handshake Authentication Protocol (CHAP)**
 - **Server**: challenge
 - **Client**: hash(challenge, secret)
 - Server hash(challenge, stored_secret) \equiv client_response
One-time passwords

- **Time-based One-Time Password**
 - User: \{ name, client_password=${hash}(secret, time) \}
 - Server:
 - \(hash(lookup(name).secret, \text{time}) \triangleq \text{client_password} \)

- **Hash-based One-Time Password**
 - User: \{ name, client_password = $hash$(secret, token_id, counter) \}
 - Server:
 - Server: \(lookup(name) \Rightarrow \text{stored_secret, stored_token_id, stored_counter} \)
 - \(hash(\text{stored_secret, stored_token_id, stored_counter}, \text{time}) \triangleq \text{client_password} \)
 - update database: name.counter = name.counter + 1
Biometric Authentication

• **Pattern matching**
 – Set thresholds to determine if the match is close enough

• **False Accept Rate (FAR)**
 – Non-matching pair of biometric data is *accepted* as a match

• **False Reject Rate (FRR)**
 – Matching pair of biometric data is *rejected* as a match

• **Balance security (low FAR) vs. convenience (low FRR)**
CAPTCHA: Detecting Humans
Gestalt Psychology (1922-1923)

• Max Wertheimer, Wolfgang Köler, Kurt Koffka

• Laws of organization
 – Proximity
 • We tend to group things together that are close together in space
 – Similarity
 • We tend to group things together that are similar
 – Good Continuation
 • We tend to perceive things in good form
 – Closure
 • We tend to make our experience as complete as possible
 – Figure and Ground
 • We tend to organize our perceptions by distinguishing between a figure and a background
Objects on Mars?

Elvis

Face

Female statue
Gestalt Psychology: text continuity
HELLO
Authenticating humanness

Battle the Bots
 – Create a test that is easy for humans but extremely difficult for computers

CAPTCHA: Completely Automated Public Turing test to tell Computers and Humans Apart
 – Image Degradation
 • Exploit our limits in OCR technology
 • Leverages human Gestalt psychology: reconstruction

Origins
 – 1997: AltaVista – prevent bots from registering URLs with the search engine
 – 2000: Yahoo! and Manuel Blum & team at CMU
 • EZ-Gimpy: one of 850 words
 – Henry Baird @ CMU & Monica Chew at UCB
 • BaffleText: generates a few words + random non-English words
Microsoft

See captchas.net
They’re getting harder
Problems

• **Accessibility**
 - Visual impairment → audio CAPTCHAs
 - Deaf-blind users are left out

• **Frustration**
 - OCR & computer vision has improved a lot!
 - Challenges that are difficult for computers may be difficult for humans

• **Attacks**
 - Man in the middle attacks
 • Use human labor – CAPTCHA farms
 - Automated CAPTCHA solvers
 • Initially, educated guesses over a small vocabulary
Alternate approaches

• MAPTCHAs = math CAPTCHAs
 – Solve a simple math problem

• Puzzles, scene recognition
Alternate approaches
No premium user. Please enter the one that can NOT be created from the unfolded pattern. 29 seconds remain.
Qualifying question

Just to prove you are a human, please answer the following math challenge.

Q: Calculate:
\[
\frac{\partial}{\partial x} \left[6 \cdot \sin \left(x - \frac{\pi}{2} \right) + 3 \cdot \cos \left(2 \cdot x - \frac{\pi}{2} \right) \right] \bigg|_{x=\pi}
\]

A:

Note: If you do not know the answer to this question, reload the page and you'll (probably) get another, easier, question.
• Ask users to translate images of real words & numbers from archival texts
 – Human labor fixed up the archives of the New York Times

• Two sections
 – (1) known text
 – (2) image text
 – Assume that if you get one right then you get the next one correct
 • Try it again on a few other people to ensure identical answers before marking it correct

• Google bought reCAPTCHA 2009
 – Used free human labor to improve transcription of old books & street data

2014: Google found that AI could crack CAPTCHA & reCAPTCHA images with 99.8% accuracy
NoCAPTCHA reCAPTCHA

Just ask users if they are a robot

- Reputation management
 - “Advanced Risk Analysis backend”
 - Check IP addresses of known bots
 - Check Google cookies from your browser
 - Considers user’s engagement with the CAPTCHA: before, during, and after
 - Mouse movements & acceleration, precise location of clicks

- Newest version: invisible reCAPTCHA
 - Don’t even present a checkbox
If risk analysis fails,
- Present a CAPTCHA
- For mobile users, present an image identification or labeling problem
Other approaches: Text/email verification

- **Text/email verification**
 - Ask users for a phone # or email address
 - Similar to two-factor authentication but we're not authenticating the user
 - Service sends a message containing a verification code
 - Still susceptible to spamming & automation
 - Makes the process more cumbersome
 - Requires users to disclose some information

- **Measure form completion times**
 - Users take longer than bots to fill out and submit forms
 - Measure completion times
 - Bots can program delays if they realize this is being done
The End.